제목: 강관말뚝의 설계와 시공

11 서 론

- 국내의 주요토목구조물의 기초공법중 강관말뚝사용 비중이 점차 증가 추세에 있으나 강관말뚝에 대한 기술적 이해수준이 아직은 낮은 실정임 (1996년기준 연간 67만톤 강관말뚝사용)
- 강관말뚝 설계지지력이 재료허용하중 대비 52.4% 수준이며 시공결과에 의한 재료허용하중 대비 76.8%수준임.
- 설계가 개선될 경우 말뚝지지력이 설계대비 1.5배수준까지 향상 가능하고 설계,시공 모두 개선될 경우 최대 1.9배까지 설계 지지력 증가가능함.
- 특히 고강도 강관말뚝(SPS490)적절히 시공시 현설계능력의 2.6배까지 증가 가능하므로 설계과정을 개선하여 최적항타장비 선정 및 시험시 공 통한 최적화 설계 지지력 결정이 필요함.

② 국내 강관말뚝 사용 현황

- 1. 강관말뚝 특성
 - 1)강관말뚝은 균질한 재료로서 신뢰도 높으며 큰 항타에너지로 타격하여 높은 지지력 갖는다
 - 2)여러말뚝중 말뚝재료 단위중량대비 하중지지능력 가장 크다.
 - 3)절단과 용접이음 간편하고 절단부재 재활용 비율 높다.
 - 4)다른 말뚝비해 재료비 고가로 기초공사비 증가요인
 - 5)타격에너지 크므로 소음, 진동대책 수립 필요
- 2. 국내강관말뚝 설계 및 시공현황
 - 1)말뚝기초설계 기본원칙
 - ㅇ말뚝재료 허용하중과 지반의 허용지지력중 낮은값 설계하중 결정
 - ▷연약한 지반 높은강도 말뚝사용 → 지반극한 또는 파괴 현상
 - ▷말뚝재료허용하중 = 지반허용지지력 → 최적설계
 - ㅇ지반의 허용지지력 결정조건
 - -지반조건 : 지반전단특성, 압축특성, 지중응력조건

-말뚝조건: 직경, 선란개폐, 표준조도

-기 타: 시공방법, 시공후 경과시간

2)강관말뚝 시공분석

- ○'94~96년 3년간 234개소 말뚝재하시험실시 결과
- ○주로ø406m/m , ø508m/m 많이 사용하였으며 ø609m/m 는 대규모 사업장 사용. 하한치는 ø300m/m 정도
- 강관말뚝사용은 도로,교량 39%, 건축 25%, 고속철도 12%, 항만해상구 도물 17%등
- 말뚝관입 깊이는 5~10m가장 많고 다음으로는 10~15m순으로 관입깊이 가장 깊은 말뚝은 Ø609m/m 로 67.5m 이며
- ○통상적인 설계개념으로서 말뚝직경대비 130배까지 가능하며 100배까지는 세장비 따른 저감적용 않는다.
- ○상부 구조물의 특성에 따라 안전이 우선되는 고속도로 교량 고속철도 교량등에서 많이 사용
- 3)시공현황
- ○말뚝시공후 말뚝재하시험이 설계하중의 만족여부 확인위한 목적이 대 부분으로 말뚝의 항복 및 극한 지지력 미확인이 문제됨
- 234개소 말뚝재하시험결과 말뚝재료 허용하중 평균값 76.8%정도로 국내설계현황 52.4%비해 1.47배 수준임→즉,국내설계기준 1.5배향상해도 무방

3. 강관말뚝 시공의 문제점

- 1) 국내의 강관말뚝 설계과정
 - 말뚝설계시 주로 구조기술자에 의해 구조측면의 하중 산정에 치중 ▷지반지지력 계산 수정 Meverhof 계산공식 사용
 - 선단지지력 성분보다 주면 마찰력 성분 우세하나 주면 마찰력 무시 하고 선단부가 N값 50이상 지층관입
 - 현행 국내 말뚝지지력 산정의 유일한 도구인 수정Meyerhof 공식도 말뚝의 시공관입성 연계 않으면 단순한 계산공식일뿐 말뚝 설계사용곤란
- 2) 항타 장비 선정문제
 - 강관말뚝 항타시공은 항타장비선정이 말뚝지지력 결정에 가장 중요한 요소임.

- 국내항타장비선정 대부분 과거경험 의해 시공자가 선정 rø508.0×12m/m → 램중량 3.5t 적합 └ø609.6×12m/m → 램중량 6.0t 디젤해머사용(외국경우)
- 즉 국내 경우 대부분 램중량이 가벼운 것 선정
- 국내ø406m/m 경우 디젤해머시공이 유압해머보다 많으며 램중량 2.5t해머 보편적 사용
- ø609.6m/m 경우 디젤해머보다 에너지 효율 좋은 유압해머 많이 사용(67%)

③ 강관말뚝의 설계

1. 여 건

- 말뚝설계시 해당지반 조건별로 말뚝의 항타시공 관입성이나 최적항타 장비 선정에 대해 고려되지 않는 실정
- 최근 항타말뚝의 지지력 평가에 큰영향 미치는 시간경과 따른 지지력 변화현상도 고려 못하는 실정임.
- 2. 말뚝재료의 허용하중
 - 말뚝설계하중 결정은 말뚝재료의 허용하중과 지반의 허용지지력중 낮은쪽 선택
 - 말뚝설계하중은 지반지지력보다 말뚝재료의 허용하중에 의해 결정되는 선진국형 말뚝설계로 전환요구
 - 1)강관말뚝 재료

구 분	항복강도(kg/c㎡)	인장강도(kg/c㎡)	허용응력(kg/c㎡)	비고
SPS400	2.397이상	4.080이상	1,400	
SPS490	3.213이상	4.998이상	1,900	

2)세장비

- ○말뚝은 가늘고 긴 구조부재로서 직경대비 관입깊이가 어떤 범위 초과 하면 좌굴우려
- <u>말뚝길이</u> <u>말뚝직경</u> > 130 → NO 〈 130 → OK
- 3)외국과의 설계기준 비교
 - ㅇ우리나라는 일본의 설계기준과 대동소이

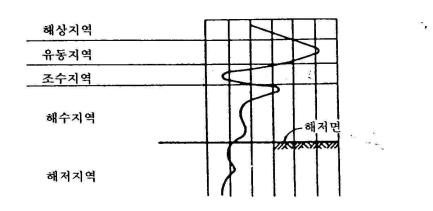
ㅇ우리나라 경우: 재료허용능력의 평균 52.4%사용

1.400×52.4%=733.6(kg/cm²) 설계적용

○외국 경우: 선단부 미보강 항복강도의 27.8%, 선단부보강 33.3%,

PDA측정 경우 40% 두부부분은 50%적용

 $2.397 \times 27.8\% = 666.4 (kg/cm^2)$


○따라서, 우리나라 설계기준보다 오히려 외국기준이 더 낮은 사유는
 외국 경우 강재의 부식 항타시 재료 손상가능성 세장비 저감 현장용접
 이음등 →말뚝재료의 허용하중저하 요인 모두 감안되었음

3. 강관말뚝의 부식대책

1)부식환경

○해수에 의한 부식 ○공기중노출부식 ○지반내부식

(가)해수부식

해수에서 5년 동안의 시험결과 (Kure Beach, U. S. A)

(나)대기부식

○ 강재는 습기존재 않으면 부식거의 발생 않는다. 대기부식은 먼지 및 불순물등이 금속표면상에 붙어 습기와 쉽게 접촉응축

(다)토중부식

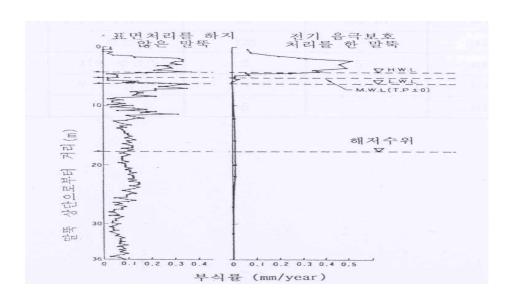
- ○토양의 전기저항의해 주로 결정되며 토중에 묻힌 수많은 산소농담 전지로 구성되어 강관 및 케이블부식
- ○토중공기조성은 대기중 조성과 다르며 나무뿌리의 호흡 및 물질부 패등 산소를 소비하면서 CO2생성

2)국내외 부식관련 시방규정

가)국내기준

- 강관말뚝부식 관련기준 "구조물기초 설계기준" 또는 "도로교 표준시 방서에 있다.
- ○강관말뚝 부식 감소두께는 말뚝이 흙,물에 접하는면에 대해서만 고려
- ○말뚝두께는 압축, 인장, 휨, 전단등 설계상의 모든응력에 대한 안전한 두께에 부식두께 더한값설계 ▷일반적2m/m 부식두께 고려
- ○해수 혹은 공장폐수 주기적반복해서 물에 잠기는 부분 충분한 방식 처리규정

(나)국외기준


강관말뚝의 부식속도에 관한 기준 (깊은기초, 1993)

	기준, 지침, 시방서	무식속도 또는 무석한계
항만관계	항만시설의 기준, 동해설 (일본항만협회, 1979. 3)	HWL 이상 0.3 mm/yr HWL과 해저간 0.1 mm/yr 해저니층중 0.03 mm/yr 육상대기중 0.1 mm/yr 흙안(잔류수위위) 0.03 mm/yr 흙안(잔류수위아래) 0.02 mm/yr
건축관계	건축기초 구조설계기준 (일본건축학회, 1975. 5)	부식한계 (0.2 mm/yr를 잡으면 충분함) × 내용연수
	건설성 주택국 건축지도 806호 (1978. 11)	지반의 부식시험을 행한 경우 연간부식한계 (mm/yr) × 80 (또는 내용연수) 부식시험을 행하지 않은 경우 2 mm
ĺ	동경도 건축구조 설계지침 (1979. 5)	연간부식한계 (mm/yr) × 80 말뚝의 주변 흙에 접한 표면 2 mm 강재로 둘러싸인 안쪽의 표면 (개단말뚝) 0.5 mm
토목관계	구조물 설계표준해설 (일본국유철도, 1974, 6)	말뚝의 주변 흙에 접한 표면 2 mm 강재로 둘러싸인 안쪽의 표면 0.5 mm 6 cm 이상의 두께인 콘크리트에 접한 표면 0 이들 값은 중간정도의 부식성 지반에서는 80년 정 도의 부식한계에 상당
	阪神 고속도로공단 설계기준(1978. 4)	부식한계 2 mm 를 표준
	일본도로공단 설계요령 제 2집 (1978. 4.)	부식한계 2 mm 등 및 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등
	일본하수도 사업단 설계 기준 제 4차안 (1979. 4)	말뚝이 흙 또는 물에 접한 면 2 mm 강관말뚝 안쪽에 대해서는 고려하지 않아도 좋다.
	도로교시방서 통해설 IV 하부구조편 (일본도로협회, 1979. 8)	해수나 유해한 공장폐수 등의 영향을 받지 않는 경우에는 부석조사를 행하지 않으며, 방식처리도 하지 않을 때는 상시 수중 혹은 토중에 있는 부분 (지하수 중에 있는 부분도 포함) 에 대해서 일반적 으로 2 mm의 부식두께를 고려
	토지개량사업계획설계 기준 (농림 수산성 구조개선국, 1978, 10)	말뚝의 주면 홈에 접한 표면 2 mm 강제로 둘러싸인 안쪽의 표면 0.5 mm 6 cm 이상의 두께인 콘크리트에 접한 표면 0

3)강관말뚝 부식 측정 사례조사

(가)일본

- ○일본토목학회가 1962~1966년간 15m길이 526본 강관파일 10년간 시험
- 0시험결과
 - -지표면 근처부분 제외하고 말뚝표면 거의변화 없음.
 - -시험말뚝 평균부식율 0.0106m/m/Yr(양쪽 10년)
 - →한쪽면 경우 0.0053m/m/Yr
 - -항타후 시간경과함에 따라 부식율은 감소하며 이와같은 배경으로 설계 부식율 0.02m/m/Yr (양쪽)제안
- Ohsaki의 부식율과 지반요인 연구결과
 - -지표면에서 3m깊이까지가 부식율이 가장 크다.
 - > 3m정도까지 공기침투 때문
 - -부식율은 조립토냐 세립토냐에 영향 받지않고 투수계수에도 영향받지 않는다
 - ▷ 산소공급영향
 - -N치와 부식율 상관관계 없다.
 - -부식율은 지반의 환경요인과는 뚜렷한 관계 없다.
- ㅇ해상구조물의 부식측정
- -해수에서 부식조건 : 염분,조류속도 분해산소 미생물활동, 강재제원 및 모양, 표면상태등
- -해수에서의 부식율은 흙에서의 부식율보다 약10배정도 크다.

해수지역에서 보통 강재의 평균 부식률

해양환경	시험말뚝의 종류	관찰자료의 개수	기간(yr)	부식륜(mm/yr.
해상지역 .	부식시험말뚝	19	0.4-16	0.128
MI 0 21 7 .	평균	19	-	0.128
	널 말뚝	8	6-40	0.112
	강관말뚝	1	8	0.250
유동지역	H형 강말뚝	2	5-7	0.198
· .	부식시험말뚝	16	0.4-15	0.363
	평균	27		0.272
TO DE PAR	널 말뚝	35	5-40	0.044
	강관말뚝	41400	3-8.5	0.070
조수지역	H형 강말뚝	2	5-7	0.055
	부식시험말뚝	27	0.4-16	0.137
	평균	68	2	0.083
	널말뚝	42	5-42	0.047
	평균	42	-	0.047
	널말뚝	59	5-42	0.039
해수지역	강관말뚝	5	3-8.5	0.062
	H형 강말뚝	3	5-23.6	0.049
	부식시험말뚝	61	0.3-16	0.143
	평균 m ba	128	-	0.090
alumai (p. 15 pilo)	H형 강말뚝	2	5-7	0.033
해지지역	부식시험말뚝	3	3-5	0.103
	평 it	5		0.075

미국과 유럽에서 수행한 부식측정사례

위치	강재	환경	기간	부식용(mm/yr)
성프란시스교, 레이크시, 아칸소, 미국	8" × 4" H형 말뚝	지하 0.3m의 실트질 유기질토	21	0.0076
비팔로해협 방파제, 뉴욕, 미국	14" × 3/8" 널말뚝	하수와 공장유출수로 오염된 강바닥층 2.1m 깊이 흙	19	0.0076
Material	224	하수와 공장유출수 표면에 인접한 곳	19	0.0112
델라웨어강의 Hog섬 필라델피아, 펜실베니아, 미국	14" × 3/8" 널말뚝	하수와 공장유출수로 오염된 물속	17	0.0198
Roseua교, 미네소타, 미국	9" H형 말뚝	강표면에 인접한 곳	29	국부적인 부식률 0.0272 0.0225 0.0397 0.0520 0.0396
성샤를교, 퀘벡시, 캐나다	널말뚝	강표면에 가까운 곳	16	표면도장 ×
10th st.교 munongahela, 파츠버그 펜실베니아, 미국	12" 널말뚝	강바닥의 흙속	19	×
괴센버그, 스웨덴		강표면 강바닥 흙속	26	0.0381 0.0038-0.0077
Uglum철도교, 괴센버그, 스웨덴	19 ∅ rod 21m long	점토층	18	0.01
Hofslund, 노르웨이	부식시험을 위한 강말뚝	실트층	17	0.006-0.012
Oslogate, 오슬로, 노르웨이	" 141 142 144 241	점토층	18	0.0056-0.0278

4)부식방지책

- ○강말뚝 부식주원인은 전기화학작용에 의해 강재표면에 부식전지발생 철이 이온화하여 부식
- ○부식3조건
- -물(전해질용액)의 존재, 산소의 공급 강말뚝 각부의 전위차 발생
- (가)부식 방지책

부식 방지 책

환경	EOF	하양				
부식방지책	토양	해면	유동지역	조수지역	해수중	토양속
부식허용	0	0	0	0	0	0
코팅		0	0	-0		*:
유기물 라이닝			0	0		
무기물 라이닝	HE		0	0		
급속표면처리	II III I		0	0	THE P	
부식방지 저급 합금강	12 3		0	0		7 11
부식방지 강제	Alm) -	0	0	0		相事
전기음극보호처리	Wali			0	0	0

- * 상기 방법들의 타당성은 각 구조물의 내구 연한과 중요도에 따라 판단되어야 한다.
- ○일본건설성 3년부식시험결과 보통말뚝비해 음극 처리한 말뚝의 부식율 1/10감소
- ○음극처리 결과 코팅방법 함께사용시 40배의 부식방지효과 있으며, 해수에서 100년 구조물 수명 요구되는 경우 사용
- ○해수와 해저지역은 전기식 부식방지책 적절
- 4. 부주면 마찰력산정 및 허용하중 결정
 - 1)부주면 마찰력
 - ㅇ점토층이나 성토나 매립한 압축성이 큰 지반은 주변지반이 말뚝보다

상대적으로 많이 침하하는 경우→부가적인 하중 작용하는데 이때의 마찰력은 정마찰력의 상대적인 개념으로 부주면 마찰력이라 한다.

- o 말뚝의 부마찰력 유발하는 지반조건
- 압축성 토층위에 상재하중 가해지는 경우
- 지반 자체의 무게로 인한 자중압밀
- 지하수위의 하강 → 동결흙의 해빙
- 항타로 인한 주변흙의 교란으로 압축성 증대 및 말뚝주위 과잉간극 수압 유발
- ○일정길이 아래에서는 말뚝의 침하가 → 지반의 침하량보다 커지게 되는 지점 중립점
- 2)부주면 마찰력의 문제점
 - ○부마찰력 작용 경우 말뚝침하가 정마찰력 작용하는 경우 비해
 - → 상대적으로 매우 크다.

현장실험 의하면 → 하향력 920t 까지 작용 경우

- 3)부주면 마찰력을 고려한 안전율
 - ○부마찰력 의한 하향력은 말뚝의 지지력에 관한 문제라기 보다 침하문제이다.
 - ○즉, 말뚝의 극한지지력은 하량력의 유무에 관계없이 일정하나 말뚝과 지반간의 상대적인 변위차로 인해 말뚝에 작용하는 최대하중의 작용 위치는 하향력에 의해 영향받는다.
 - 하향력이 없을 때 최대하중은 말뚝상단에 위치하고 → 말뚝두부에 작 용된 하중과 같다.
 - ○하향력이 작용하면 최대하중은 → 중립점에 위치하고 말뚝두부작용 하중+부마찰력 값과 같다.
 - 아따라서, 말뚝이 부마찰력에 의해 파괴될 가능성을 항상 중립점 부근에서 확인되어야 하고 중립점 산정이 선행되어야 한다.
- 4)구조물 기초 설계기준(한국)
 - ㅇ중립점의 위치
 - 마찰말뚝 또는 불완전지지 말뚝 : 0.8H
 - 보통모래나 모래자갈층 : 0.9H
 - 암반이나 굳은지층 : 1.0H
 - ○부마찰력에 대한 안전율 : 1.0사용

5)기 타

○부마찰력 작용하는 말뚝의 안전율은 말뚝재질강도, 지반의 지지력, 허용침하량을 동시 적용

5. 군말뚝 조건의 고려

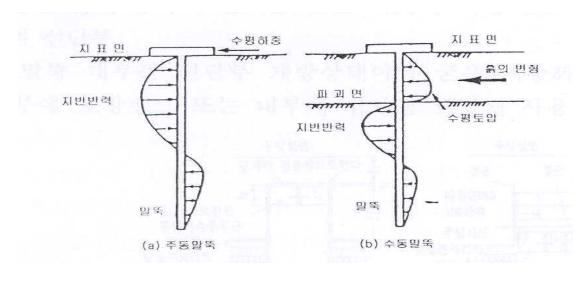
- ○말뚝의 시공은 대부분 일정한 간격으로 근입되는 군말뚝으로 사용
- ○개개 말뚝들의 간격이 촘촘하여 상호작용이 있는 경우 군말뚝 효과는선단지지력에는 거의 영향 미치지 않으나 주면 마찰력에는 → 큰 영향 미친다.
- ○점성토에 말뚝 타입하면 흙이 교란되고 그 영향으로 인접한 말뚝에 영향 미치므로 군말뚝의 지지력은 주면마찰력의 감소로 단말뚝의 지 지력을 합한것보다 대부분 작아진다.
- ○사질토 지반에 말뚝 타입할 경우 ø〉 40°이면 → 항타시 체적팽창발생
 → 군말뚝 효과가 1.0미만이 되나 ø〈 40°이하면 → 주변지반의 다짐효과로 →주면마찰력 높여주어 단말뚝 지지력보다 오히려 커진다. 그러므로 ø〈 40°경우 군말뚝 효과는 무시할 수 있다.
- ○군말뚝에 작용하는 하향력은 단말뚝의 경우보다 작고 외부말뚝보다 내 부말뚝의 하향력이 훨씬작다.
- ○그룹효과를 고려 부마찰력을 감소시킬수 있는 말뚝중심간격 2.5D~ 5.0D 적절.
- ㅇ부마찰력을 고려할 지반조건
- 예상압밀 침하 10cm이상
- 말뚝시공후 지표면침하 10m/m이상
- 성토고 : 2m이상
- 연약층 두께 : 10m이상
- 지하수위 하강 → 4m이상
- 말뚝길이 → 25m이상
- 말뚝과 주변지반간의 상대적인 변위가 2m/m이상

6. 부주면 마찰력 감소공법

- ○선행하중을 가해 미리 감소방법
- ㅇ말뚝의 그룹효과이용 방법
- ㅇ전기삼투작용 이용 말뚝주변에 물막이층 만드는 방법
- o 말뚝두부에 비해 선단폭이 좁은말뚝 사용

- o마찰을 감소시킬 수 있는 도장재료로 도포방법 → S.L도포
 - →역청재를 말뚝표면에 도장하는 방법
 - →역청재도포 외국 경우 하향력을 최고 98%까지 감소시키고 말뚝의 부식방 지 효과도 있다.
- ○역청재도장 → 도장않은 강관 말뚝에 비해 15~50% 비용증가되나 도 장말뚝의 시공비용과 지지력의 상대적인 비교결과에 의하면 도장말뚝이 않은 말뚝에 비하여 도장비용이상의 하중을 받을수 있으므로 경제성이 있다고 할 수 있다.

7. 시간경과에 따른 말뚝지지력 변화


- ○현재까지 연구결과 시간경과따른 말뚝지지력 변화
 - → 주로 말뚝의 주면마찰력에 대해 나타난다.
- ○국내경험에 의하면 말뚝항타한후 주변마찰력이 항타시 보다 2~3배 증가 경우 많다.
- ○시간경과따른 말뚝 지지력 변화현상은 어떠한 경우에도 생략할 수 없 는 필수적으로 고려사항
- ○시간경과 효과고려 위해서는 설계단계에서 반드시 시험시공 실시하여 야 한다.

8. 시험시공 실시에 의한 설계하중 결정

- ○시험시공은 설계전 혹은 시공전에 실시 할 수 있으며 제대로 수행하면 시험시공자체의 경비 또는 기초공에 대한 경제성 크게 향상
- ○우리나라의 말뚝기초의 설계와 시공 전반적 과잉설계 또는 적절치 못 한 시공 주류를 이루고 있다.
- ○즉, 시험시공이 개략적인 시공성 및 말뚝의 관입 깊이 정도 확인에만 국한된다면 기초공에서 과잉설계 혹은 지지력 미달이라는 극한적인 상 황 재현 내재.
- ○설계 및 시공기준 확립위해 시험항타 필수적이며 시간경과 따른 지지력 확인 및 동적지지력 공식활용 측면에서 정재하 시험을 원칙으로 하고 동재하 시험을 보완적으로 사용함이 좋을 것임.

9. 말뚝의 수평지지력

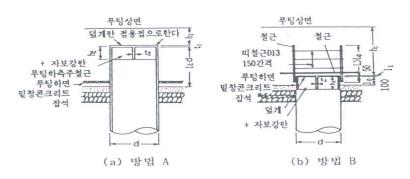
- ○교량, 건물, 해양구조물, 항만시설, 옹벽등 기초말뚝에는 연직력뿐아니라 수평력과 모멘트 동시작용
- ○말뚝에 작용하는 수평력의 원인은 지진, 바람, 파도, 토압, 수압, 제동력 등이 있다.
- ○수평력을 받는 말뚝의 과다한 변위나 파괴는 상부 구조물에 심각한 영 향 미칠 수 있다.

- ○주동말뚝은 말뚝두부에 수평력 재하 말뚝의 변위가 주변지반의 변위를 일으키는 경우
- ○수동말뚝은 주변지반에서 성토나 암밀침하등 말뚝주변 지반이 먼저 변 형 일으켜 그 결과 말뚝에 측방토압 작용.
- ○수평력을 받는 말뚝 말뚝과 지반중 어느것이 움직이는 주체인가에 따라 주동말뚝, 수동말뚝 구분
- ○최근 교대, 도로의 성토등 연약지반상에 시공 경우 많아 지반의 측방 유동 영향 반드시 검토

10. 강관말뚝의 구조세목

- 1) 말뚝두부와 기초판의 결합
 - ㅇ말뚝과 기초판의 결합부는 원칙적으로 말뚝두부 고정으로 설계
 - ○말뚝두부결합방식 고정과 힌지결합
 - ○고정결합 설계는 수평변위량에 따라 설계지배 유리하고 부정정 차수 크기때문 내진상의 안전성 높기 때문 힌지결합보다 강결로 설계원칙

가)결합방법


○방법A는 기초판속에 말뚝두부 일정깊이 만큼 근입하되 말뚝두부 근입

깊이는 말뚝지름이상

○방법B는 기초판속으로 근입 말뚝 길이 최소화 하되 주로 철근을 보강 말뚝두부의 휨모멘트에 저항하는 방법으로 말뚝두부의 근입 깊이는 10 cm로 한다.

나)설계방법

- AB방법 모두 말뚝과 기초판의 결합하는데 강결로서 말뚝두부 부분에 압축력, 인발력, 수평력 모멘트등 모든 외력에 저항하도록 설계
- 2) 강관말뚝의 선단부
 - ○국내강관말뚝 대부분 선단부 개방상태이며 굳은 지층까지 관입하므로 말뚝선단부에 보강밴드 또는 내부에 십자형 보강재 사용

강관말뚝의 구조세목

4 강관말뚝의 시공

- 1. 항타장비 선정
- 강관말뚝시공시 적절한 항타장비 선정은 말뚝의 설계조건 만족을 위하여 가장 필수적인 사항
- ○종래 국내에서 일본의 강관말뚝 시공기준 토대로 항타장비선정 기준채택. 그러나 실무에서는 아직도 이러한 항타장비선정기준을 맹목적 답습하 거나 개인적 경험의존 대부분
- 항타장비 선정시 지반조건과 말뚝재료 조건 종합적 고려하는 파동이론 분석 필수적이다.
- 항타장비선정 적절치 못한 "예"
 - ø609.6m/m × 12m/m 와 ø508×12m/m 말뚝을 K-35 디젤해머로 시공후 말뚝재하 시험결과
 - · ø508.6m/m 가 K-35에 적합하여 150t 허용지지력인데 비해ø609.6 m/m는

허용지지력 90t불과(디젤해머 용량부족때문)

- ※파동이론분석 시행하면 대부분 경우 이러한 문제 해결할 수 있다.
- 2. 강관말뚝의 항타시공 관리방안
 - 1)종래의 검토내용에 파동이론분석(WEAP)기법 추가하여 말뚝의 항타시공 관 입성 검토
 - ○파동이론분석(WEAP) → 항타과정을 컴퓨터로 재현하는 기법으로 말 뚝재료안전성 항타장비의 적합성 개략적인 지지력등 항타에 앞서 검토
 - ○국내경험에 의하면 WEAP분석 적절시행될 경우 말뚝의 설계하중 크게 높일 수 있다.
 - ○항타장비의 계획단계에서 이를 필히시행 요망
- 나)파동이론분석 통해 적절한 항타장비선정 시항타 실시
 - ○지반조사 내용과 실제지반조건의 차이, 컴퓨터에 입력된 항타장비 효 율과 실제항타장비간의 차이등 상존하므로 시항타로 확인 바람직
- 다)시항타시 동재하시험(EOID)실시하되 동재하 시험 개소수는 가능한 3개소이 상 바람직
- 라)항타공식은 Hiley 또는 Danish공식 적용하고 타격에너지는 항타시 동재하 시험에서 측정한 값사용
- 바)항타시 동재하시험 결과에 의한 말뚝지지력은 시간경과 효과가 배제된 값이다. 시간경과 효과는 예측할 수 없으므로 일정한 시간(최소 1~2주일)경과한 시점에서 재항타 동재하 시험 실시
- 3. 정적 압축재하시험
 - 1)시험개요 및 장치
 - ○정적압축재하시험은 신뢰성이 높아 실제 말뚝지지력의 기준값으로 여겨지고 있다.
 - ○정적압축재하시험은 침하량이 주요문제인 현장, 소구경현장타설말뚝 시험현장, Relaxation이 일어날 수 있는 현장 동재하시험의 검증이 필 요한 현장등 한정된 수량에 대해 수행하고 경제적이고 많은 정보를 제공하는 동재하시험을 최대활용하는 것도 효율적 판단임.

4. 동재하시험

1)개 요

○동재하시험은 말뚝정적지지력 산정, 말뚝과 지반간의 거동측정, 항타

장비의 성능검증등 3가지 목적

- ○동재하시험 갯수는 공사규모, 지반의 변화정도, 동재하시험목적등 의해 결정되며 소규모공사 경우 최소한 2개소이상 필요
- ○대규모공사, 어려운현장등 기초구조물별로 1~2개소씩 시험실시 일반적
- ○동재하시험의해 말뚝지지력 판정 경우 항타종료후 일정시간 경과후 재항타시험실시(보통 7일정도경과)
- ○재항타 경우 해머는 다른말뚝항타직후 또는 시험용이 아닌 다른말뚝 타격하여 충분히 예열가해진 상태에서 사용

2)PDA분석

○시공관계자나 설계기술자들 모두 PDA화면표시와 동재하시험 정보에 익숙 필요

3)CAPWAP분석

- CAPWAP(Case pile wave Analysis program)방법은 말뚝두부에서 측정된 힘과 시간 또는 가속도와 시간과의 관계이용 지지력예측 방법
- CAPWAP은 PDA로부터 얻어진 힘과 속도를 이용 말뚝에 작용하는 힘과 말뚝의 변위를 정량화하여 말뚝의 지지력 지반저항력의 분포, Quake Damping특성 결정
- 동재하시험결과에 대해 CAPWAP분석실시 말뚝 극한지지력 얻을 수 있다. 5. 강관말뚝의 용접

1)이음작업

- 강관말뚝은 큰 면적저항력 및 휨저항력 필요한 경우 또는, 지반조건 나쁜장소 많이 사용하므로 말뚝길이 길고 이음개소 많다.
- 그러므로 강관말뚝의 현장용접이음은 신뢰성이 높아야 한다.
- 말뚝잇는 경우 용접용이하도록 말뚝두부 50~80cm남겨 박는다.

ㅇ 강관말뚝의 표준적인 용접시간 참고표

말뚝의 치수(mm)	ϕ 500×9(t)	ϕ 500 × 12(t)	ϕ 600 × 12(t)	φ 1016×14(t)
반자동 용접(분)	15 ~ 20	20 ~ 25	25 ~ 30	40 ~ 50
수동 용접(분)	40 ~ 60	50 ~ 70	60 ~ 80	140 ~ 160

2)용접법의 종류

- ○반자동용접 → 용접속도 빠르고 사용전류 400~800A정도이며 안정된 전력공급 및 용접공 기량 필요
- ○용접이음부의 강도는 용접공의 기능에 좌우 《이음부의 용접시 주의할점》

가)환경정비

- •용접봉은 습기흡수하지 않도록 보관
- •용접기구 정비

나)용접준비

- •이음부는 수분, 흙, 녹, 기름등 가스버너 또는 와이어브러쉬 제거
- · 10m/sec이상 바람불면 용접작업 불가능 10m/sec이하라도 필요따라 방풍설비 준비
- ·0°c 이하 기온시 용접부를 사전에 가스버너로 가열

다)용접조건

• 적정한 전류, 전압, 용접속도 선정

3)용접검사

- ○용접부 검사방법은 육안법, 방사선(RT), 초음파(UT), 침투탐상법
- ○일반적으로 육안검사는 틈, 비트, 언더컷, 오버랲, 치수부족, 녹아내림등 전수량검사 보통
- 방사선투과 시험은 중요구조물에 사용하며 대구경의 두께가 큰말뚝 이음부에서 선택적으로 행하는 경우 있다.
- ○초음파 탐상시험은 주파수가 높은 음파보내 반사하는 음속판단 음압을 전압으로 변화 용접부 탐상
- ○침투탐상법은 용접부에 침투액 도포하여 건조되면 현상액 뿌려 균열,

틈, Undercut등 검사

- ○용접이음 검사수는 국내소수 시방규정에 말뚝 25본당 1개소씩 검사
- 6. 시공오차
 - 말뚝시공오차 → 수직성과 위치 이동 구분
 - ㅇ각종 기준에서의 시공오차 허용기준

관련규정	위치이동	수직성	비고
BS 8004	75(mm)	1 / 75	영국
D.T.U. No. 13. 2	60~150mm	3%(single pile) 2%(group pile)	프랑스
New York City Building Code	75(mm)	4%	미국 뉴욕시
ACI	60~150mm	2~4%	미국
항기초시공편람	D/4 또는 100mm 이내	1% 이내	일본 (일본도로협회)
도로교표준시방서	D/4 또는 100mm중 큰값	1% 이내	한국 (건설교통부)

- ○말뚝에 휨이 발생했을 경우 콘크리트 말뚝 경우 중요한 검토사항이나 강관말뚝에서는 주요검토사항 아니다.
- ○말뚝시공 오차가 최대허용한도보다 크면 시공된 상태대로 군말뚝 해석하여 하중의 분포 재분석 보강등의 조치.

7. 안전율

- ○재하시험을 실시하지 않는 경우 N치만에 의해 극한 지지력 산정한 경우 4.0도 안전측만으로 볼수 없다.
- ○재하시험 실시개수 많아 짐에 따라 안전율을 최대 2.2까지 줄일 수 있음을 보여준다.

1)안전율에 관한 토의

- ○표준관입시험결과 N치에 근거한 말뚝설계법은 신뢰성이 크게 떨어지며 캐나다에서는 4.0적용 권장.
- ○유럽의 거의 모든나라에서는 SPT는 거의 사용하지 않으며 현장시험 으로 CPT, PMT등 실험결과 근거로 말뚝지지력 산정 주로 이루어진다.
- ○유럽통합 Code에서는 재하시험 실시않고 CPT, PMT등 현장 실험근거로 지지력 예측때도 안전율 2.5넘지 않는다.

○동재하 시험이 점점 크게 파급되고 있으며 스웨덴에서는 정재하시험 않고 동재하 시험만 하는 경우 있다.

8. 실무적용 방안

- ○우리나라 강관말뚝설계에서는 "지반조건+말뚝재료조건+항타장비조건" 미고려하고 통상 지반조사 내용의거 N값 50이상인 지지층까지 관입 항타설계
- ○대부분 주면 마찰력을 설계하중 결정에서 무시하고 그결과 말뚝설계는 말뚝재료가 허용하는 하중의 극히 일부만을 활용하는 기술적 후진성 피할 수 없다.
- ○강관말뚝의 설계하중을 적절하게 결정위해 파동이론분석과 시험시공의한 시간경과 효과확인 필수적

말뚝의 관입 능력

1 서론

- 구조물의 기초로서 사용되는 말뚝은 설치방법에 따라 굴착말뚝과 타 설말뚝 등으로 나눌수 있다.
- 말뚝 타설시 지나치게 안전성을 추구하여 너무 깊이 말뚝을 타설하는 경우 경제성을 잃게 됨.
- 따라서, 말뚝의 관입능력은 말뚝의 크기, 재질, 해머 종류 및 효율, 낙하 속도, 완충재의 강도, 반발계수 그리고 말뚝 주변 흙의 성질 등에 따라 큰영향을 받는다.
- 그러므로 말뚝은 말뚝의 관입 능력과 경제성 등을 고려, 가장 적절한 시공이 요구되는 실정임.

2 말뚝

1. 말뚝의 종류

- 말뚝은 재질에 따라 나무말뚝, 콘크리트말뚝, 강재말뚝 등으로 구분
- 콘크리트말뚝은 콘크리트 양생시기에 따라 기성말뚝과 현장 타설말뚝 으로 구분
- 기성콘크리트 말뚝에는 보강콘크리트말뚝(RC)와 P,S콘크리트 말뚝 (PSC, PHC)등이 있다.
- PS콘크리트말뚝이 RC말뚝에 비하여 장점으로서
 - PS말뚝은 무게비에 비하여 고강도를 가지므로 긴말뚝 사용 가능
 - 선하중에 의해서 항상 압축상태에 있으므로 균열이 적어 부식성이 있는 흙이나 해양 작업시에 유리
- 단점으로는
 - 취급 할때의 어려움과 여분의 길이를 잘라내야 하는 문제등

2. 말뚝의 형태

- 말뚝의 4가지 기본 형태
 - 전길이에 따라 균일한 단면, 끝단이 넓어진 형태 Tapered형태, Sheet형태

- 균일한 단면을 갖는 말뚝은 두부에서 단까지 일정한 기둥강도를 가지며 표면 마찰력이 전축에 걸쳐 잘분포 되어있고, 이음과 절단 등에 잘 적응 하고 원형 단면이 가장 유리.
- 끝단이 넓어진 형태 말뚝은 단지지력과 하단에서의 마찰력 증가 유리
- 끝이 점차 가늘어지는 말뚝은 원래 나무말뚝에서 유리하나, 쇄기작용 으로 느슨한 모래질에 유리.
- H형 말뚝은 어떤 하중 조건에도 적용할 수 있는 넓은 범위의 크기와 너비를 갖고 있다. 지표면의 융기나 횡방향의 변위를 막기위해 사용 단면의 강성에 비해 축방향으로 휨에 대해서 상대적으로 약하므로 타설도등 축방향으로 휘려는 경향이 있다.

3. 말뚝의 크기

- 말뚝을 설치할 때 말뚝크기는 말뚝부재의 물리적 크기뿐 아니라 필요한 지지력의 크기 모두를 말한다.
- 흙의 저항이 작을때는 가벼운 말뚝(벽두께 얇은 말뚝)이 무거운 말뚝 보다 더낮은 타격횟수에서 효과적인 관입 일어난다.
 - ▷ 흙의 저항이 클때는 이와 반대현상이 일어난다.

3 해머

- 타격에 의해서 에너지를 말뚝으로 전달하는 해머는 말뚝 타설장비 등 에서 핵심부분을 차지한다.
- 해머를 움직이는 에너지원으로는 증기, 압축공기, 디젤, 유압 등 이용

1. 해머의 분류

- 1) 자유 낙하해머(drop hammer)
- 가장 오래된 형태의 해머로서 전체무게가 1~5톤 정도의 쇠뭉치를 크레인 와이어에 의해 위로 높이 올려져 자유 낙하동작 반복
- 낙하높이가 어느정도 낮게 제한되므로 에너지가 부족한 것으로 판단되면 낙하높이를 올리는 것보다 해머의 무게를 늘리는 것이 좋다.
- 연약한 점토지반의 타설 등에 많이 사용
- 2) 단동해머
- 증기나 압축공기를 이용해서 램을 들어 올리고 그것을 중력에 의하여 자유 낙하시킨다.

○ 복동해머나 디젤해머에 비해 낮은 타격속도와 무거운 타격무게를 가지므로 타설능력을 감소시킬 수 있어 무거운 기성콘크리트 말뚝타설에 알맞다.

3) 복동해머

- 램을 들어올릴 때와 낙하시에 모두 증기 또는 에어를 사용하여 단동 해머보다 분당 타격횟수가 크다
- 연속적인 타격에 의해 말뚝과 주변 흙을 움직이는 상태에 있게 하므로 사질토에 효과적
- 높은 진동수 유지를 위해 보통 가벼운 램을 많이 사용
- 지지력 말뚝(Bearing Pile)보다 널말뚝 설치에 많이 사용
- 4) 차동해머
- 램의 무게는 단동 해머 범위에 들어가고, 분당 타격횟수는 복동해머와 유사하므로 양쪽의 장점을 다 갖고 있다.
- 5) 디젤해머
- 연약한 점토층과 같이 저항이 적은 경우 제외한 거의 모든 종류의 조건 에 가장 많이 사용하는 해머로 단단한 점토질의 흙에 말뚝타설 할 때 가장 알맞다.
- 타설 저항이 클 때 최대에너지 발휘

2. 해머의 무게

○ 해머의 무게는 말뚝타설에 큰영향을 미치는데 콘크리트 말뚝의 경우 말뚝내에 발생하는 응력이 문제되는 경우가 있으므로 알맞는 무게의 해머 선택 중요.

Dom Weight Ibs	Driving Energy ft-Ib			
Ram Weight Ibs	20,000	40,000		
2,000	3,450psi	4,900psi		
5,000	2,980psi	4,200psi		
10,000	2,420psi	3,400psi		
20,000	1,950psi	2,750psi		

※ 램의 무게와 에너지와 따른 타설응력의 변화

○ 일정한 타설 에너지에서 램의 무게가 증가 할수록 타설응력이 감소함

- 을 알수 있다.
- 따라서, 무거운 램과 Short Stroke 갖은 해머가 가벼운 램과 큰 스트로크 갖은 해머보다 유리함을 알수 있다.
- 해머크기 어느 일정한 한계치 이상 증가 시키는 것이 말뚝의 관입능 력을 크게 증가 시키지 않는다.
- 무거운 램을 사용할 때에 말뚝내부에 발생하는 응력은 말뚝단에서 견고한 층을 만나게 될 경우 단에서 압축파가 반사되어 오므로 말뚝 단에서는 이론적으로 말뚝 두부의 압축응력 2배가 되므로 말뚝에 손상 가져올 수도 있다.
- 보통의 조건이나 흙의 저항이 큰 경우 등에는 무거운 해머가 가벼운 해머보다 유리하다.
- 램의 형태가 다르면 말뚝의 관입능력 영향을 미치는데 길이가 긴 램을 사용하는 것이 짧은 램을 사용하는 것 보다 관입능력의 증가를 가져온다.

3. 해머의 속도

○ 램의 충격속도가 크게 되면 말뚝 내부에 큰 응력이 발생된다. 말뚝내부에 발생하는 응력의 크기가 램의 충격속도와 직접 비례하기 때문

	Variation	of	Driving	Stress	with	Ram	Weight	and	Velocity
--	-----------	----	---------	--------	------	-----	--------	-----	----------

Ram	Ram	n Velocity, f	ft/sec-Strok	e, ft
Weight Ibs	11.4-2	13.9-3	16.1-4	18.0
2,000	1,550psi	1,850psi	2,100psi	2,350psi
5,000	2,000psi	2,500psi	2,980psi	3,320psi
10,000	2,400psi	3,000psi	3,420psi	3,820psi
20,000	2,750psi	3,380psi	_	_

- ※ 램의 무게와 속도의 변화에 다른 타설응력의 변화
- 위 표, 램의 무게증가 함에 따라 응력 크기도 증가 하지만 이것은 램의 속도 증가에 따른 응력의 증가보다 그 영향은 작다.
- 특히, 콘크리트 말뚝을 타설할 때 속도가 큰 램을 사용하면 충격속도에 비례하는 큰압축 응력파가 말뚝 따라 진행. 말뚝단의 저항에 따라 압

축파 또는 인장파로 반사되어 돌아 오거나 흙속으로 투과해 들어간다 → 말뚝인장 파괴 야기

4. 해머의 효율

- 말뚝 타설시 해머로부터 말뚝으로 전달되는 실제 에너지는 말뚝 타설에 큰영향 요소중의 하나이다.
- 일반적 해머의 효율은 70%~95% 정도로 가정하고 종종 80%로 가정 하기도 한다
 - → 숙련된 기술자도 현장에서 해머 효율판단은 어려운 문제임.
- 실제 현장에서 Case Method 사용 실제에너지 측정하여 해머효율 조 사결과 상당히 낮은 값인 25~60% 정도 나타남.
- 해머가 말뚝을 가격 할 때에 충격에 의한 에너지 손실이 있다. 즉, 해머가 가지고 있는 에너지는 충격시 발생하는 소음에너지, 쿠션과 말뚝의 탄성에너지 등 형태로 손실 발생
- 실제 말뚝으로 전달되는 에너지는 보통 ENTHRU로 표시되며 ENTHRU에 영향을 미치는 변수들은
 - 해머의 유용한 운동에너지
 - 쿠션 블록의 형태와 그 상태(마모 정도)
 - 말뚝 길이, 강성, 램의 무게
 - 타설시 작용하는 흙의 저항
- 정확한 해머의 효율을 알기 위해서 현재 가장 많이 사용하는 방법은 말뚝 선단부에 계기 설치해서 해머충격시 발생하는 말뚝의 변위, 힘, 가속도등 측정, 해석하는 방법 사용
- Michigan State Highway Commison 현장에서 해머효율 조사 결과
 - 스팀해머 평균 효율 : 25~65% 정도
 - 디젤해머 평균 효율 : 45~65% 정도
- 해머효율 감소의 가장 큰문제 되는 것은 흙의 저항이 클때인데 설계 깊이까지 말뚝타설 하려면 상당한 양의 타격 추가 필요

④ 완충재 (Cushioning Material)

- 1. Cushion의 기능
 - 해머 타격의 충격을 완화 시키고 말뚝과 해머의 손상 방지를 위해 해머와

말뚝 사이에 완충재를 설치한다.

- 해머와 강재 헬멧 사이에 설치하는 것을 캡블록(Cap block) 강재 헬멧과 말뚝사이에 설치하는 것을 쿠션으로 구분.
- 종래에는 완충재가 에너지 효율을 감소 시키므로 말뚝의 관입능력을 감소 시키는 것으로 알려졌으나 동역학적 파동이론에 의하면 쿠션을 램과 말뚝 두부와의 접촉시간을 늘리고, 말뚝타설에 유리한 형태로 변조시켜 주므로 실제 말뚝타설에 도움이 된다.
- 완충재의 주요 기능
 - 해머의 충격 하중을 말뚝 두부 표면위에 고르게 분포 시킨다.
 - 램의 충격력을 완화 시키므로 말뚝내부에 발생하는 응력이 말뚝의 항복능력을 초과 않도록 한다.
 - 말뚝의 관입능력에 영향을 미치는 램의 충격시간을 조절한다.
- 말뚝에 발생하는 타설응력을 감소 시키는데 나무 캡블록이 강성이 큰 캡블록 보다 효과적인 것으로 알려져 있다.

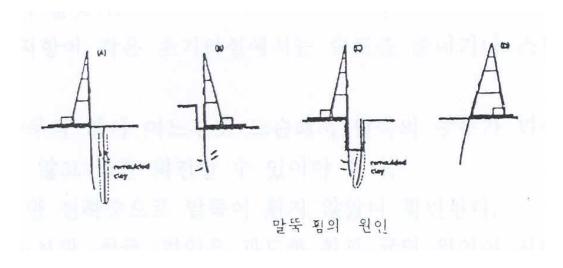
2. Cushion의 강도와 반발계수

- 쿠션의 강도와 반발계수는 말뚝에 발생하는 응력의 크기, 해머의 에너지 전달, 말뚝의 관입능력에 큰 영향을 미친다.
- 일반적으로 쿠션강도가 증가하면 말뚝으로 전달하는 에너지(ENTHRU)가 증가하는 경향이 있으나 항상 그런 결과를 가져오지 않으며, 그 증가 폭도 좀 작은 편인 약 10% 정도로 나타났다.
- 오히려 쿠션의 반발계수 값이 쿠션의 강도보다 말뚝타설에 큰영향을 미친다.
- 말뚝관입 속도를 늘리기 위하여 쿠션강도를 크게 하는 것은 말뚝내부에 큰응력을 초래하므로 비효율적이며, 흔하지 않은 타설 방법이다.
- 따라서, 말뚝에 발생하는 타설응력을 감소시키고 ENTHUR를 증가 시 키기 위해 쿠션 강도는 작고, 높은 반발계수 갖는 쿠션 유리

5 흙의 성질

- 1. 흙의 탄성변화값(Quake)과 감쇠상수(Damping Constant)
 - 흙의 탄성변화값은 흙의 소성파괴가 일어나기 직전까지의 탄성변화에 의한 변위를 나타내는 것으로 흙의 저항이 최대가 되는 변위를 나타낸다.

- 흙의 탄성 변화값 Q는 대략 0.05in~0.4in 사이로 나타나며 보통의 말뚝 조건에서 사용되는 탄성변화값은 01.in이다.
- 가장 확실한 일관된 경향은 Q값의 증가에 따라서 최대한 변위가 증가 한다.
- 해머의 타격에 의한 동역학적 하중은 정역학적 하중상태에서 나타나지 않는 흙의 감쇠현상을 나타낸다.
 - 이러한 감쇠현상은 흙의 점성 때문으로 점성토의 경우 특히 중요하다.
- 그러나, 흙의 탄성변화와 흙의 감쇠상수의 변화도 최대 Enthru 값에 큰영향을 주지 못한다.


2. 흙의 강도회복 (Soil setup or Freezing)과 강도손실(Relaxation)

- 흙의 강도회복과 강도손실은 시간과 관련된 요소로서 파동방정식으로 예측할 수가 없으며 사질토 보다 점성질의 흙이 문제된다.
- 시간경과에 따라 밀뚝 지지력의 감소현상은 단단한 점토질의 흙에서 발생할 수 있는데 이것은 말뚝타설시 진동으로 인해 말뚝 주변 흙과 말뚝 사이에 작은 공간이 생기는 원인으로 추정
- 흙의 강도회복은 말뚝타설 과정에서 주변 흙의 교란으로 강도가 감소 하다 타설후 과잉간극수압의 손실로 강도 회복
- 시간에 따른 지지력 회복은 점성토의 예민비와 재압밀에 의존되며 어떤 원인에 의해 말뚝타설 증가될 경우 흙의 강도 회복현상이 일어나 최 초의 타설 때 보다 더큰 저항이 요구된다.
- 따라서 점성토 지반에 말뚝타설을 하다 중단하는 경우 상당한 시간 경과후 재타설을 하려고 할 때 소요 깊이까지 말뚝을 설치하지 못하는 경우가 있으므로 말뚝 타설시 시간의 영향을 충분히 고려해야 한다.

6 말뚝의 파손

- 흙속으로 말뚝 타설시 종종 말뚝의 파손을 가져 오는데 말뚝 파손의 가장 일반적인 형태는 말뚝단의 파손과 말뚝의 휨현상이다.
- 말뚝단의 파손은 보통과도한 타설로 발생 되는데 견고한 장애물을 만나게 될 때도 발생한다. 콘크리트 말뚝의 경우 연약층을 관입해 나감에 따라 말뚝단에서 반사되어 오는 인장파로 인해 말뚝 인장파괴가 발생하는 경우도 있다.

- 말뚝 휨은 일반적으로 말뚝이 장애물을 만나게 될때 많이 발생한다.
 - A) 말뚝은 새롭게 타설된 말뚝 주변의 교란된 점토 방향으로 휘려는 경향이 있다.
 - B) 굴착방향을 따라서 흙의 변위가 일어나며 말뚝은 벽면에서 멀어지는 방향으로 휘려는 경향이 있다.
 - C) 말뚝은 굴착된 참호의 주임선을 따라 휘려는 경향이 있다.
 - D) 말뚝자중 때문에 경사말뚝은 수평방향으로 휘려는 경향이 있다.

- 말뚝의 휨 현상은 좌굴의 위험을 가져오는데 특히, 횡방향의 거리가 충분하지 못한 연약한 점토지반의 경우 큰문제가 될 수 있다.
- 콘크리트 말뚝을 타설할 때 발생하는 말뚝의 파손형태 구분의 4가지 유형
 - (1) 말뚝의 두부에 매우 높거나 불규칙한 압축응력의 집중으로 콘크리 트가 부서지는 현상
 - (2) 말뚝의 단에서 극단적으로 큰저항을 만나게 될 때 말뚝의 끝단에서 콘크리트가 부서지는 현상
 - 견고한 암반위에 말뚝을 타설할 때 끝단이 고정단지지와 같으므로 반사된 압축파로 인하여 상단의 압축응력의 2배가 된다.
 - (3) 말뚝의 단 또는 두부에서 반사되어 돌아오는 인장응력파로 인한 횡 방향 균열이나 파괴
 - (4) 말뚝 두부를 강재헬멧 또는 말뚝캡이 너무 구속하여 발생하는 비틈력 과 반사된 인장력파의 결합으로 생기는 나선형 또는 횡방향의 균열

- 콘크리트 말뚝 타설시 발생하는 문제점 해결을 위한 경험적 요구사항
- (1) 강재헬멧 또는 캡과 콘크리트말뚝 두부와의 사이에 적당한 완충재 사용할 것
 - 짧은말뚝(50ft 이하) 타설시 3~4in 나무완충재 적합 -긴말뚝 타설시는 6in, 8in 또는 그이상의 나무 완충재 적합
- (2) 말뚝에 발생하는 타설응력은 램의 충격속도에 비례 하므로 같은 에 너지 갖는 해머 일때는 낮은 충격속도를 갖는 무거운 램을 사용하 는 것이 알맞다.
- (3) 흙의 저항이 작은 초기타설에서는 속도를 줄이거나 스트로크를 줄이다.
- (4) 말뚝두부의 캡이 어느정도 느슨해서 말뚝의 두부가 타설두부에 구속되지 않고 약간 회전할 수 있어야 한다.
- (5) 불균일한 선하중으로 말뚝이 휘지 않았나 확인한다. 소홀한 보관, 취급, 견인은 과도한 휨과 균열 원인이 된다.
- (6) 말뚝의 상단부가 말뚝의 세로축과 직각인가를 확인한다.
- (7) 말뚝의 끝단과 두부에 적당한 양의 나선형 보강을 할 것
- (8) 말뚝단에서 반사되어서 오는 인장력파에 저항할 수 있는 여분의 선 하중을 P.S 콘크리트 말뚝에 가한다.

7 장비의 선정

- 콘크리트 말뚝은 가장 널리 사용되고 있으며 조밀히 다져지고 품질이 좋은 콘크리트는 어느정도 관입이 어려운 타설조건에도 견딜수 있으나 견고한층, 자갈층 등은 강재 말뚝을 사용한다.
- 해머가 같은 에너지를 가질 때에는 무거운 해머를 사용하는 것이 가벼운 해머를 사용하는 것 보다 유리하다
 - 가벼운 해머를 사용하면 말뚝내부에 더 큰 타설응력이 발생하고, 에너지의 손실이 크기 때문.
- 말뚝타설에 사용하는 쿠션은 나무쿠션이 충격하중을 완화 시키고 타설응력 감소효과 크므로 많이 사용.

지반 상태	느슨한 모래 (loose sand)	보통모래 (medium sand)	촘촘한 모래 (dense sand)
말뚝	끝단이 점차 가늘어 지는 기성콘크리트말뚝(taper pile) -이 말뚝은 그들의 쐐기작용 으로 느슨한 모래에서 보통 모래지반까지 다짐효과가 있 고 주변 마찰이 크다	끝단이 점차 가늘어지는 기성콘크리트 말뚝 (taper pile)	강재 H말뚝 강관 말뚝 -흙의 저항이 클 때 가장 알맞은 말뚝이다
해머	복동해머, 차동해머 -이들은 단위 시간당 타격횟수가 많으므로 말뚝주변의 흙을 진동상태에 있게 하여 사질토의 말뚝타설에 알맞다 복동해머는 램의 무게가 작으므로 무거운 말뚝을 타설 할때는 비효율적이고 지지력 말뚝보다 널말뚝(sheel pile) 의 타설 등에 많이 사용된다	다 사용할 수 있다.	차동 해머 디젤해머
쿠션	나무쿠션	Micarta 쿠션 -에너지 전달효율이 좋다	Micata 쿠션 -에너지 전달효율이 높다

지반 상태	연약 점토(soft clay)	보통점토(medium clay)	단단한 점토(stiff clay)
말뚝	기성콘크리트 말뚝 -일반적으로 가장 널리 사용된다. 강재 H말뚝 -주변 흙의 배제가 적으므로 횡방향 변위 등이 문제가 될 때 사용하면 좋다	기성콘크리트 말뚝 강재 H말뚝	기성콘크리트 말뚝 강재 H말뚝, 개단강관말뚝 -말뚝의 무게가 무거우면 흙의 저항이 클 때 저항을 극복할 수 있는 능력이 크다 강재 H말뚝이나 개단강관 말뚝은 주위 흙의 배제가 적으므로 에너지 손실이 적어 저항이 큰 타설일 때 알 맞다.
해머	3톤~4톤 정도의 자유낙하 해머 -낙하높이를 낮게 조절할 수 있어 단저항이 적을 때 문제가 되는 인장응력을 줄일수 있다.	무거운 기성콘크리트 말뚝의 타설에 유리하다. 디젤해머 -램의 크기가 작으면	단동해머 -램의 무게가 무거우므로 말뚝의 관성(inertia)을 극복
쿠션	나무쿠션 -콘크리트 말뚝의 타설시 타설응력을 효과적으로 줄일 수 있다.	나무쿠션	나무쿠션 Micarta 쿠션

□ 해양구조물, 암반, 견고한 층

지반상태	해양 구조물 설치시	암반이나 견고한 층
말 뚝	중공형(hollow) P.S 콘크리트 말뚝 강관말뚝 -말뚝의 길이가 길어야 하고, 측면저항에 강해야 한다	강재 H 말뚝 강관말뚝 -암반위에 정착할때나 자갈등을 포함한 층을 관입해 나갈 때, 견고한층(hardpan)등을 관입해 나갈 때 가장 알맞다.
해 머	단동해머 -무거운 말뚝을 타설하기에 가장 알맞은 해머이다.	단동해머
쿠 션	Micarta쿠션 에너지 전달효율이 좋아야 한다.	Micarta 쿠션 에너지 전달효율이 좋아야 한다.