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We examine a situation that n eavesdroppers attack the Bennett-Brassard cryptographic protocol via their
own optimal and symmetric strategies. Information gain and mutual information with sender for each eaves-
dropper are explicitly derived. The receiver’s error rate for the case of arbitrary n eavesdroppers can be derived
using a recursive relation. Although the first eavesdropper can get mutual information without disturbance
arising due to other eavesdroppers, subsequent eavesdropping generally increases the receiver’s error rate.
Other eavesdroppers cannot gain information on the input signal sufficiently. As a result, the information each
eavesdropper gains becomes less than optimal one.
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I. INTRODUCTION

Quantum cryptography is one of the major applications of
quantum information theories �1,2�. While other applications
such as quantum teleportation and quantum computer require
tens or even thousands of qubits, the quantum cryptography
scenario such as Bennett-Brassard 1984 �BB84� protocol �3�
can be implemented, at least theoretically, using only single
qubit technology. This is the main reason why the quantum
cryptography based on BB84 or Ekert 1991 �Ekert91� �4� is
now at the stage of the industrial era �5�.

According to the usual BB84 protocol the sender �Alice�
sends a single qubit to the receiver �Bob� by choosing ran-
domly one of the conjugate bases ��x� , �y�� and ��u� , �v��,
where

�u� =
1
	2

��x� + �y��, �v� =
1
	2

��x� − �y�� . �1.1�

Then Bob performs a quantum-mechanical measurements in
these bases. After measurements, Alice and Bob communi-
cate with each other via classical public channel and estab-
lish a secret quantum key by using only those cases in which
the bases of Alice and Bob coincide.

How much information an eavesdropper �Eve� can gain
when Alice and Bob perform the usual BB84 scheme? The
answer of this question is important to check the security of
the quantum cryptography. In this reason many authors ex-
amined the various strategies with one- and two-dimensional
probes �6–9�. Among them Ref. �9� derived the optimal �or
maximal� mutual information between Alice and Eve as a
function of the disturbance D in the BB84 protocol. The final
result can be summarized as follows:

Ixy =
1

2
��2	Duv�1 − Duv��, Iuv =

1

2
��2	Dxy�1 − Dxy�� ,

�1.2�

where Ixy �or Iuv� is the optimal mutual information when
Alice sends a signal to Bob via x−y �or u−v� basis, and
��z�= �1+z�log2�1+z�+ �1−z�log2�1−z�. The constants Dxy
and Duv denote the disturbances in these bases. The most
different point of the quantum cryptography from the classi-
cal one is the fact that Eve cannot get information from the
trusted parties without arising the disturbance. This implies
that the quantum scheme is more secure than the classical
cryptography.

Recently, many different cryptographic protocols have
been studied from the purely theoretical ground �at least at
current stage� even if most quantum cryptography has been
demonstrated by making use of either one of BB84 or Ek-
ert91 protocols. One of the motivations for searching other
protocols is to strengthen the security against eavesdropping.
The simple extended protocol is a six-state protocol �10,11�.
In this protocol Alice sends a signal to Bob after choosing
randomly one of three conjugate bases ��x� , �y��, ��u� , �v��,
and ��w� , �z��, where

�w� =
1
	2

��x� + i�y��, �z� =
1
	2

��x� − i�y�� . �1.3�

The basis ��w� , �z�� corresponds to the circular polarization if
Alice and Bob use a photon polarization as a qubit. The
optimal mutual information between Alice and Eve is plotted
in Fig. 1, which implies that the six-state protocol is more
secure than usual four-state BB84 against eavesdropping.
Another extended protocol �12–15� is that Alice and Bob use
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qutrit �d=3� or more generally qudit �d=4,5 , . . .� instead of
a qubit. The optimal mutual information in this protocol is
also plotted in Fig. 1 when d=3, 4, and 5. Figure 1 indicates
that the protocol with d-level system is more secure against
eavesdropping with increasing d. Furthermore, the quantum
cryptography with continuum �16� and noisy states �17� is
under investigation. However, all of these other protocols
seem to be far from embodiment in a few years from the
aspect of experimental science.

In this paper we would like to explore the situation where
many eavesdroppers �Eve1, Eve2, . . .� attack the BB84 pro-
tocol optimally. We assume that all of the eavesdroppers
think they are unique eavesdropper. Our computation is
based on the quantum circuit expression of the optimal
eavesdropping strategy �18�. This paper is organized as fol-
lows. In Sec. II we review Ref. �18� briefly. In this section
we develop a computational technique, which is useful when
many eavesdroppers try to attack optimally. In Sec. III we
examine the situation where Eve1 and Eve 2 attack the usual
BB84 protocol. Information gain G�i� and mutual information
I�i� are explicitly computed, where i=1 or 2 corresponds to
Eve1 and Eve2, respectively. When Eve1 and Eve2 attack
via symmetric optimal strategy, we compute Bob’s error rate
or disturbance DB,2 explicitly, where the subscript “2” de-
notes the two eavesdroppers. It turns out that both optimal
strategies fail. Although Eve1 can gain information on Al-
ice’s signal as much as possible, Eve2 increases the distur-
bance or Bob’s error rate. For Eve2 she cannot gain informa-
tion sufficiently due to Eve1’s disturbance. In Sec. IV we
examine the situation where three eavesdroppers attack the
BB84 protocol. The mutual information for each eavesdrop-
per is analytically derived. Furthermore, Bob’s error rate
DB,3 is also explicitly derived on condition that all eaves-
droppers use the symmetric strategies. In Sec. V we have
generalized the results of the previous sections. When n
eavesdroppers attack, the mutual information for each eaves-
dropper is analytically derived. Also the recursive relation of
the Bob’s error rate is derived. It turns out that all optimal
strategies eavesdroppers choose eventually fail except very
rare cases. Finally a brief concluding remark is given.

II. ONE EAVESDROPPER

The quantum circuits for the optimal eavesdropping in x
−y and u−v bases are given in Fig. 2. The top line belongs to
Alice and Bob, and the bottom two lines to Eve. In order to
perform the optimal eavesdropping strategy Eve prepares the
initial states as following:

�e0� = 	1 − �uv�x� + 	�uv�y� = 	1 − Duv�u� + 	Duv�v� ,

�f0� = 	1 − Dxy�x� + 	Dxy�y� = 	1 − �xy�u� + 	�xy�v� ,

�2.1�

where � and D are related, when they have same subscripts,
through the formula

� =
1

2
− 	D�1 − D�, D =

1

2
− 	��1 − �� . �2.2�

If Alice sends a signal using x−y basis, Fig. 2�a� shows
that the entangled states between Alice and Eve becomes

�x� → �X� = �0�xxx� + �1�yxy� + �2�xyx� + �3�yyy� ,

�y� → �Y� = �0�yyx� + �1�xyy� + �2�yxx� + �3�xxy� ,

�2.3�

where

�0 = 	1 − �uv
	1 − Dxy, �1 = 	1 − �uv

	Dxy ,

�2 = 	�uv
	1 − Dxy, �3 = 	�uv

	�xy . �2.4�

For later use it is necessary to express Eq. �2.3� more
compactly. This can be achieved by

�X� = 

i=0

3

�i�i�2�i�4, �Y� = 

i=0

3

�i�i + 1�2�i + 2�4, �2.5�

where �j�2 and �j�4 means �j modulo 2� and �j modulo 4�.
Thus �j�2 and �j�4 represents the one- and two-qubit states,
respectively, with ordering x and y for �j�2 and xx, xy, yx, and
yy for �j�4. This compact notation will be usefully used in the
following sections when many eavesdroppers attack.

When Alice sends a signal using u−v basis, the usual
controlled-NOT gate changes

�uu� → �uu�, �uv� → �vv�, �vu� → �vu�, �vv� → �uv� .

�2.6�

FIG. 1. Plot of D dependence of the optimal mutual information
when Alice and Bob use the various different protocols.

�

�

⊕

⊕ ⊕

⊕

�

�Alice Bob

|e0〉
|f0〉

(a)

Alice Bob

|e0〉
|f0〉

(b)

FIG. 2. Quantum circuit expression for the optimal eavesdrop-
ping strategy. �a� and �b� represent the optimal strategy when Alice
sends a signal using x−y or u−v basis, respectively. The bottom
two lines belong to Eve and the top line to Alice. Time advances
from left to right.
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Thus the controlled-NOT gate in x−y basis can be easily un-
derstood in u−v basis by exchanging the control gate with
target gate. This is a reason why Fig. 2�b� used in u−v basis
is different from Fig. 2�a�.

Now, we want to show that the entangled states �2.3� with
suitable positive operator-valued measure �POVM� measure-
ment enables Eve to get information optimally. The complete
set of the positive operators, which is used for POVM, can
be derived generally as projective operators onto the eigen-
vectors of �xy =�x−�y, where �19�

�x = TrAlice�X��X�, �y = TrAlice�Y��Y� . �2.7�

For our case the complete set of the positive operators is
�E0 ,E1 ,E2 ,E3� with E0= �xx��xx�, E1= �xy��xy�, E2= �yx��yx�,
and E3= �yy��yy�. Then it is easy to compute P�i= �I�1
� E��I� with I=X or Y and i=x or y, which is the probability
that Eve detects outcome � when Alice sends a signal i,

P0x = �0
2, P1x = �1

2, P2x = �2
2, P3x = �3

2,

P0y = �2
2, P1y = �3

2, P2y = �0
2, P3y = �1

2. �2.8�

Using Eq. �2.8�, one can compute q�= �1 /2��P�x+ P�y� and
Qi�= �1 /2�P�i /q�,

q0 =
1

2
�1 − Dxy�, q1 =

1

2
Dxy ,

q2 =
1

2
�1 − Dxy�, q3 =

1

2
Dxy , �2.9�

and

Qx0 = 1 − �uv, Qx1 = 1 − �uv, Qx2 = �uv, Qx3 = �uv,

Qy0 = �uv, Qy1 = �uv, Qy2 = 1 − �uv, Qy3 = 1 − �uv.

�2.10�

The quantity q� is a probability that Eve has outcome � when
Alice uses x−y basis. The quantity Qi� is posterior probabil-
ity on Eve’s guess after she has a outcome �. Then the in-
formation gain is defined as G�= �Qx�−Qy��, which, for our
case, is � independent,

G� = 1 − 2�uv = 2	Duv�1 − Duv� . �2.11�

Thus, the mutual information IAE between Alice and Eve
reduces to

IAE �
1

2

�

q���G�� =
1

2
��2Duv�1 − Duv�� , �2.12�

where ��z�= �1+z�log2�1+z�+ �1−z�log2�1−z�.
Now, let us derive Bob’s error rate, usually called distur-

bance when Alice sends a signal using the x−y basis. First,
we consider the following quantities:

d�u � 1 −
�U�Bu � E��U�
�U�1 � E��U�

, d�v � 1 −
�V�Bv � E��V�
�V�1 � E��V�

,

�2.13�

where �U�= �1 /	2���X�+ �Y��, �V�= �1 /	2���X�− �Y��, Bu
= �u��u�, and Bv= �v��v�. These are probabilities Bob gets a
wrong result conditioned upon Alice sending �u� or �v�, and
Eve measuring �. Computation of d�u and d�v is straightfor-
ward. The result is that d�u is identical to d�v and they are
also � independent as follows:

d�u = d�v � d� = Duv �� = 0,1,2,3� . �2.14�

Then Bob’s error rate DB is given by

DB � 

�

q�d� = Duv. �2.15�

Thus Eq. �2.12� can be rewritten as

IAE =
1

2
��2DB�1 − DB�� , �2.16�

which is the optimal mutual information derived in Ref. �9�
when Alice sends a signal using x−y basis. If Alice uses u
−v basis, we should repeat the previous calculation using
Fig. 2�b�. The final result is identical with Eq. �2.16� except
DB=Dxy. Thus, the strategies expressed by Fig. 2 give opti-
mal information to Eve regardless of the basis Alice is using.

III. TWO EAVESDROPPERS

Now we consider a situation that two eavesdroppers,
Eve1 and Eve2, attack the usual BB84 protocol. We assume
that Eve1 and Eve2 do not know each other and they use
their own optimal strategies. Thus corresponding quantum
circuit should be Fig. 3 when Alice sends a signal using x
−y basis. From now on we will use the superscript �i� to
distinguish the quantities �or states� which belong to Eve1
and Eve2.

Using the compact notation used in Eq. �2.5�, one can
derive the entangled states at the stage represented as a dot-
ted line in Fig. 3,

�

�

⊕

⊕ �

�

⊕

⊕Alice Bob

|e(1)
0 〉

|f(1)
0 〉

|e(2)
0 〉

|f(2)
0 〉

FIG. 3. Quantum circuit expression for the situation where two
eavesdroppers Eve1 and Eve2 attack the usual BB84 protocol when
Alice sends a signal to Bob using x−y basis. The top line belongs to
Alice, next two lines to Eve1, and bottom two lines to Eve2. If
Alice uses a u−v basis, this figure should be modified by exchang-
ing the control gates with target gates in all controlled-NOT gates.
Time advances from left to right.
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�x� → �X� = 

i,j=0

3

�i
�1�� j

�2��i + j�2�i�4�2i + j�4,

�y� → �Y� = 

i,j=0

3

�i
�1�� j

�2��i + j + 1�2�i + 2�4�2i + j + 2�4.

�3.1�

In order to derive the POVM elements for Eve1 we con-
struct the operator

�xy
�1� = �x

�1� − �y
�1�, �3.2�

where

�x
�1� = TrA,E2�X��X�, �y

�1� = TrA,E2�Y��Y� . �3.3�

In Eq. �3.3� TrA,E2 means a partial trace over Alice and
Eve2’s qubits. Then it is easy to compute the eigenvectors of
�xy

�1�, which gives the complete set of the positive operators
�E0

�1� ,E1
�1� ,E2

�1� ,E3
�1�� to Eve1, where

E0
�1� = �xx�2,3�xx�, E1

�1� = �xy�2,3�xy� ,

E2
�1� = �yx�2,3�yx�, E3

�1� = �yy�2,3�yy� . �3.4�

The subscript 2,3 means qubits of second and third lines in
Fig. 3. By same way one can construct the complete set of
the positive operators for Eve2, which is

E0
�2� = �xx�4,5�xx�, E1

�2� = �xy�4,5�xy� ,

E2
�2� = �yx�4,5�yx�, E3

�2� = �yy�4,5�yy� . �3.5�

Then the remaining calculation for the mutual information
IAE1 between Alice and Eve1, and IAE2 between Alice and
Eve2 is straightforward. The information gains G�

�1� for Eve1
and G�

�2� for Eve2 turn out to be � independent as follows:

G�
�1� = 1 − 2�uv

�1�,

G�
�2� = �1 − 2�uv

�2���1 − 2Dxy
�1�� �� = 0,1,2,3� . �3.6�

Therefore from a comparison of Eq. �3.6� with Eq. �2.11�
Eve1 seems to be able to get information as much as the case
of unique eavesdropper. This is due to the fact that Eve1
attacks the BB84 protocol earlier than Eve2 and therefore,
gathers information without perturbation arising due to Eve2.
However, this does not mean that Eve1’s optimal strategy is
succeeded. As shown in Fig. 1 optimality of the eavesdrop-
ping does not uniquely depend on the quantity of information
that eavesdropper can gain. In order to get success in the
eavesdropping, eavesdropper should decrease the distur-
bance as much as possible. These two factors, increase in
information gain and decrease in disturbance, determine the
success or failure of the optimal strategy. As will be shown
shortly, Eve1’s optimal strategy fails because Eve2 increases
Bob’s error rate. For Eve2 the information gain involves an
interesting factor 1−Dxy

�1�. Thus Eve2’s information gain de-
pends on the Eve1’s choice of Dxy

�1�. This is manifestly due to
the fact that Eve2 performs her optimal strategy after Eve1.
If Eve1 chooses Dxy

�1�=0, Eve2 can get information as much

as Eve1 if �uv
�1�=�uv

�2�. This indicates that Eve2 can in-
crease her information gain if Eve1 does not disturb the sig-
nal Alice sent to Bob. The mutual information IAE1 and IAE2

reduce to

IAE1 =
1

2
��G�

�1��, IAE2 =
1

2
��G�

�2�� . �3.7�

Now, let us turn to Bob’s error rate. Unlike the unique
eavesdropper case discussed in Sec. II the situation is very
complicated. In this case it could happen that Eve1’s distur-
bance and Eve2’s successive disturbance does not generate
an error to Bob. Thus equation corresponding to Eq. �2.13� in
Sec. II should have one more index, i.e., d�u→d���u and
d�v→d���v. Since, furthermore, both optimal strategies Eve1
and Eve2 have chosen do not get success, we expect to have
d���u�d���v. Thus we should compute the Bob’s error rate
separately when Alice sends �u� and �v�. Since computation
in this way needs long and tedious calculation, we will try to
make the situation simpler.

To make the situation more simple we assume that both
eavesdropping strategies are symmetric, i.e., Dxy

�1�=Duv
�1� and

Dxy
�2�=Duv

�2�. In this case we can compute Bob’s error rate di-
rectly from the entangled states Eq. �3.1�, which is

DB = D�1��1 − D�2�� + D�2��1 − D�1�� . �3.8�

In Eq. �3.8� we omit the subscript because it is useless in the
symmetric strategies. If D�2�=0, DB becomes D�1� which is
Bob’s error rate if Eve1 is an unique eavesdropper. If D�1�

=0, DB becomes D�2� which is also Bob’s error rate if Eve2 is
an unique eavesdropper. The general Bob’s error rate be-
comes nice combination of D�1� and D�2�.

Figure 4 is DB dependent of IAE1 �Fig. 4�a�� and IAE2

�Fig. 4�b��. We plot IAE1 in Fig. 4�a� when D�2�=0.1, 0.2, and
0.3, respectively. For comparison we plot the optimal infor-
mation Iopt �see Eq. �1.2�� and mutual information IAB be-
tween Alice and Bob defined,

IAB = 1 + DB log2 DB + �1 − DB�log2�1 − DB� , �3.9�

together. As Fig. 4�a� indicates, Eve1’s mutual information
with Alice is in general smaller than Iopt when D�2��0. If
D�2� approaches to zero, IAE1 approaches to Iopt. This means
that failure of the Eve1’s optimal strategy is only due to the
fact that Eve2 increases the disturbance. We plot IAE2 in Fig.
4�b� when D�1�=0.1, 0.2, and 0.3, respectively. For compari-
son we plot Iopt and IAB together. As expected IAE2 ap-
proaches to Iopt in the limit D�1�→0. In this case, however,
IAE2 decreases very rapidly compared to IAE1 with increas-
ing D�1�. This seems to be mainly due to the fact that Eve2’s
information gain is affected by Eve1 as shown in Eq. �3.6�.

In Fig. 5 we plot IAE1 and IAE2 together as functions of
D�1� and D�2�. In most regions IAE1 is larger than IAE2. This
is also due to the D�1� dependence of Eve2’s information gain
G�

�2�. In the small D�1� region, however, IAE2 becomes larger
than IAE1. This is due to the fact that Eve1 cannot gain in-
formation without increasing D�1� as Eq. �3.6� indicates.
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IV. THREE EAVESDROPPERS

In this section we consider a situation that three eaves-
droppers called Eve1, Eve2, and Eve3 attack the usual BB84
protocol. In Sec. III we assume that they think they are
unique eavesdroppers and choose their own symmetric strat-
egies. Thus corresponding quantum circuit should be Fig. 6
when Alice sends a signal using x−y basis.

Using the compact notation used in Eq. �2.5�, one can
derive the entangled states at the stage represented as a dot-
ted line in Fig. 6. The final result becomes

�x� → �X� = 

i,j,k=0

3

�i
�1�� j

�2��k
�3��i + j + k�2�i�4�2i + j�4

��2i + 2j + k�4,

�y� → �Y� = 

i,j,k=0

3

�i
�1�� j

�2��k
�3��i + j + k + 1�2�i + 2�4�2i + j + 2�4

��2i + 2j + k + 2�4. �4.1�

Then, it is straightforward to construct the complete sets of
the positive operators for eavesdroppers’ POVM measure-
ments. Following the similar calculational procedure, one
can compute the information gain for each eavesdropper. The
final result can be summarized as follows:

G�
�1� = 1 − 2��1�

= 2	D�1��1 − D�1�� ,

G�
�2� = �1 − 2��2���1 − 2D�1�� = 2�1 − 2D�1��	D�2��1 − D�2�� ,

G�
�3� = �1 − 2��3���1 − 2D�1���1 − 2D�2��

= 2�1 − 2D�1���1 − 2D�2��	D�3��1 − D�3�� . �4.2�

Note that we remove all subscripts because they are not nec-

(a) (b)

FIG. 4. Plot of DB dependence of IAE1 �a� and IAE2 �b�. The dotted line is a DB dependence of the optimal strategy derived in Eq. �1.2�.
The monotonically decreasing line corresponds to IAB, mutual information between Alice and Bob. �a� implies that the mutual information
of Eve1 is less than the optimal one except D�2�=0. This is due to the fact that Eve2’s eavesdropping process generally increases Bob’s error
rate. �b� implies that the mutual information of Eve2 is also less than the optimal one except D�1�=0. This is due to the fact that Eve1’s
eavesdropping process generally decreases the information gain for Eve1.

I AE1

I AE2

0.0
0.2

0.4

D�1�

0.0

0.2

0.4
D�2�

0.0

0.5

1.0

FIG. 5. �Color online� The D�1� and D�2� dependences of IAE1

and IAE2. In most regions IAE1 is larger than IAE2. This seems to be
mainly due to the factor 1−Dxy

�1� in Eq. �3.6�. However, in the small
D�1� region IAE2 becomes larger than IAE1 because this multiplica-
tion factor becomes nearly unit in this region.

�

�

⊕

⊕ �

�

⊕

⊕ �

�

⊕

⊕Alice Bob

|e(1)
0 〉

|f(1)
0 〉

|e(2)
0 〉

|f(2)
0 〉

|e(3)
0 〉

|f(3)
0 〉

FIG. 6. Quantum circuit expression for the situation where three
eavesdroppers Eve1, Eve2, and Eve3 attack the usual BB84 proto-
col when Alice sends a signal to Bob using x−y basis. The top line
belongs to Alice, next two lines to Eve1, next two lines to Eve2 and
bottom two lines to Eve3. Time advances from left to right.
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essary in the symmetric strategy. Equation �4.2� exhibits a
simple pattern: the information gain for each eavesdropper is
a multiplication of her own 1−2� factor with 1−2D factor
of other eavesdroppers who perform their own strategies ear-
lier. Using this rule, we can compute the information gains
when n eavesdroppers attack with arbitrary number n with-
out explicit calculation. The mutual information IAE1, IAE2,
and IAE3 reduce to

IAE1 =
1

2
��G�

�1��, IAE2 =
1

2
��G�

�2��, IAE3 =
1

2
��G�

�3�� .

�4.3�

Finally Bob’s error rate DB can be read straightforwardly
from Eq. �4.1�,

DB = �D�1��1 − D�2�� + D�2��1 − D�1����1 − D�3�� + �D�1�D�2�

+ �1 − D�1���1 − D�2���D�3�. �4.4�

When D�3�=0, Eq. �4.4� exactly coincides with Eq. �3.8�. If,
furthermore, D�1�=0 or D�2�=0, Eq. �4.4� reduces to Eq. �3.8�
with changing only Eve index.

Figure 7 is the plot of DB dependence of IAE1 �Fig. 7�a��,
IAE2 �Fig. 7�b��, and IAE3 �Fig. 7�c��. We fixed D�2�=D�3�

=0.1, 0.2, and 0.3 in Fig. 7�a�, D�1�=D�3�=0.1, 0.2, and 0.3 in
Fig. 7�b�, and D�1�=D�2�=0.1, 0.2, and 0.3 in Fig. 7�c�. For
comparison the optimal mutual information Iopt and Bob’s
information IAB are plotted together. As Fig. 7 indicates, all
optimal strategies turn out to fail. Especially, Eve3 gains
very little information compared to optimal one. This is
mainly due to the fact that Eve1 and Eve2 disturb Alice’s
signal before Eve3 starts her optimal strategy. Comparison of
Fig. 7 with Fig. 4 indicates that mutual information in the
case of three eavesdroppers is overall less than those in the
case of two eavesdroppers. This seems to be due to the fact
that Eve3’s disturbance of Alice’s signal decreases IAE1 and
IAE2 in the disturbance-information diagram.

V. CONCLUSION

In this paper we have examined the situation that many
eavesdroppers attack usual BB84 protocol via their own
symmetric optimal strategies. If the number of eavesdroppers

(a) (b)

(c)

FIG. 7. Plot of DB dependence of IAE1 �a�, IAE2 �b�, and IAE3 �c�. The optimal mutual information Iopt and Bob’s mutual information IAB

are plotted together for comparison. This figure indicates that all optimal strategies performed by Eve1, Eve2, and Eve3 turn out fail.
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is arbitrarily n as shown in Fig. 8, Eqs. �2.11�, �3.6�, and
�4.2� imply that their information gains are

G�j� = �1 − 2��j���1 − 2D�1�� ¯ �1 − 2D�j−1�� �j = 1, . . . ,n� ,

�5.1�

and their mutual information with Alice are

I�j� =
1

2
��G�j�� �j = 1, . . . ,n� . �5.2�

Furthermore, Eqs. �2.15�, �3.8�, and �4.4� imply that Bob’s
error rate in the presence of n eavesdroppers can be com-
puted as follows. In order to distinguish the number of eaves-
droppers in the Bob’s error rate, we use one more index such
as DB,j, which is Bob’s error rate when j eavesdroppers at-
tack with symmetric optimal strategies. Then DB,n can be
computed from DB,n−1 by a recursion relation,

DB,n = DB,n−1�1 − D�n�� + DB,n−1�D�n−1�→1−D�n−1�D�n�.

�5.3�

Since we know DB,1 exactly, one can compute DB,n recur-
sively.

Equations �5.2� and �5.3� enable us to plot the
disturbance-information diagram for any eavesdroppers. As

commented already in previous sections, all eavesdroppers’
optimal strategies cannot succeed eventually except very rare
cases. Although the first eavesdropper can obtain mutual in-
formation without disturbance arisen due to the other eaves-
droppers, subsequent eavesdroppers increase Bob’s error
rate. This makes the mutual information of the first eaves-
dropper lower than the optimal one in the disturbance-
information diagram except D�2�= ¯ =D�n�=0. The last
eavesdropper cannot gain information due to the disturbance
of Alice’s signal arising due to the previous eavesdroppings.
Thus the last eavesdropper’s optimal strategy fails except
D�1�= ¯ =D�n−1�=0. Similar reasons make all optimal strat-
egies fail.

It seems to be of interest to extend our results to the case
of asymmetric eavesdropping. Probably it needs very long
and tedious calculation. Furthermore, asymmetric eavesdrop-
ping strategy may be not important practically because Alice
and Bob can notice the presence of eavesdropper more easily
than the symmetric case. However, from the purely theoret-
ical point of view it is interesting issue because it may give
origin of information gain and Bob’s error rate.

Although much attention has been paid to the optimal
strategy in the various protocol, the properties of the nonop-
timal case are not examined sufficiently. Since, however, the
effect of decoherence makes it impossible for eavesdropper
to perform the exactly optimal one, it seems to be more
important to explore the strategies near to optimal from the
aspect of the practical reason. Recently, it is found �20� that
the quantum resonance occurs in the Bob’s error rate when
Eve takes a near-optimal strategy. We believe that there are
other new and interesting properties in the eavesdropping
strategies near to optimal one. We would like to explore this
issue in the future.
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