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Similar to the three-qubit Greenberger-Horne-Zeilinger (GHZ) symmetry we explore the four-qubit GHZ
symmetry group and its subgroup, the restricted GHZ symmetry group. While the set of symmetric states under
the whole group transformation is represented by three real parameters, the set of symmetric states under the
subgroup transformation is represented by two real parameters. After comparing the symmetric states for whole
group and subgroup, the entanglement is examined for the latter set. It is shown that the set has only two stochastic
local operations and classical communication classes, Labc2 and Gabcd . Extension to the multiqubit system is
briefly discussed.
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I. INTRODUCTION

Quantum entanglement [1] is the most important notion
in quantum technology (QT) and quantum information theory
(QIT). As shown for the past two decades it plays a crucial role
in quantum teleportation [2], superdense coding [3], quantum
cloning [4], and quantum cryptography [5]. It is also quantum
entanglement that makes the quantum computer outperform
the classical one [6,7]. Thus, in order to develop QT and
QIT it is essential to understand how to quantify and how
to characterize the multipartite entanglement.

Since quantum entanglement is a nonlocal property of
a given multipartite quantum state, it should be invariant
under the local unitary (LU) transformations, i.e., the unitary
operations acted independently on each of the subsystems. If
|ψ〉 and |ϕ〉 are in the same category in the LU, one state can
be obtained with certainty from the other one by means of
local operations and classical communication (LOCC) [8,9].
This implies that |ψ〉 and |ϕ〉 can be used, respectively, to
implement the same task of QIT with equal probability of
successful performance of the task. However, the classification
of entanglement through LU generates infinite equivalence
classes even in the simplest bipartite systems.

In order to escape this difficulty the classification through
stochastic local operations and classical communication
(SLOCC) was suggested in Ref. [8]. If |ψ〉 and |ϕ〉 are in the
same SLOCC class, one state can be converted into the other
state with nonzero probability by means of LOCC. This fact
implies that |ψ〉 and |ϕ〉 can be used, respectively, to implement
the same task of QIT although the probability of success for
this task is different. Mathematically, if two n-party states |ψ〉
and |ϕ〉 are in the same SLOCC class, they are related to
each other by |ψ〉 = A1 ⊗ A2 ⊗ · · · ⊗ An|ϕ〉 with {Aj } being
arbitrary invertible local operators.1 However, it is more useful
to restrict ourselves to the SLOCC transformation where all
{Aj } belong to SL(2, C), the group of 2 × 2 complex matrices
having determinant equal to 1.

1For a complete proof on the connection between SLOCC and local
operations see Appendix A of Ref. [10].

The SLOCC classification was first examined in the three-
qubit pure-state system [10]. It was shown that the whole
system consists of six inequivalent SLOCC classes, i.e., fully
separable (S), three biseparable (B), W , and Greenberger-
Horne-Zeilinger (GHZ) classes. Moreover, it is possible to
know which class an arbitrary state |ψ〉 belongs in by com-
puting the residual entanglement [11] and concurrences [12]
for its partially reduced states. Similarly, the entanglement of
whole three-qubit mixed states consists of S, B, W , and GHZ
types [13]. It was shown that these classes satisfy a linear
hierarchy S ⊂ B ⊂ W ⊂ GHZ.

Generally, a given QIT task requires a particular type of en-
tanglement. In addition, the effect of the environment generally
converts the pure state prepared for the QIT task into the mixed
state. Therefore, it is important to distinguish the entanglement
of mixtures to perform the QIT task successfully. However,
it is a notoriously difficult problem to know which type of
entanglement is contained in the given multipartite mixed
state. Even for a three-qubit state it is a very difficult problem
because analytical computation of the residual entanglement
for arbitrary mixed states has been generally impossible so
far.2

Recently, classification of the entanglement classes for
three-qubit mixed states has significantly progressed. In
Ref. [15] the GHZ symmetry was examined in a three-qubit
system. This is a symmetry that GHZ states |GHZ3〉± =
(1/

√
2)(|000〉 ± |111〉) have up to the global phase and is

expressed as a symmetry under (i) qubit permutations, (ii)
simultaneous flips, and (iii) qubit rotations about the z axis.
All the GHZ-symmetric states can be parametrized by two
real parameters, say, x and y. Authors in Ref. [15] succeeded
in classifying the entanglement of the GHZ-symmetric states
completely. This complete classification makes it possible
to compute the three-tangle3 analytically for all the GHZ-
symmetric states [16] and to construct the class-specific
optimal witnesses [17]. It also makes it possible to obtain

2However, it is possible to compute the residual entanglement for a
few rare cases [14].

3The definition of three-tangle in this paper is the square root of the
residual entanglement presented in Ref. [11].
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the lower bound of the three-tangle for an arbitrary three-qubit
mixed state [18]. More recently, the SLOCC classification
of the extended GHZ-symmetric states was discussed [19].
Extended GHZ symmetry is the GHZ symmetry without qubit
permutation symmetry. It is a larger symmetry group than the
usual GHZ symmetry group and is parametrized by four real
parameters.

The purpose of this paper is to extend the analysis of
Ref. [15] to a four-qubit system. Four-qubit GHZ states4 (or
m = 4 cat states, as in Ref. [8]) are defined as

|GHZ4〉± = 1√
2

(|0000〉 ± |1111〉). (1.1)

Like a three-qubit GHZ symmetry we define a four-qubit
GHZ symmetry as a symmetry which |GHZ4〉± have up to
the global phase. Straightforward generalization, which is (i)
qubit permutations, (ii) simultaneous flips (i.e., application of
σx ⊗ σx ⊗ σx ⊗ σx), and (iii) qubit rotations about the z axis
of the form

U (φ1,φ2,φ3) = eiφ1σz ⊗ eiφ2σz ⊗ eiφ3σz ⊗ e−i(φ1+φ2+φ3)σz ,

(1.2)

is obviously a symmetry of |GHZ4〉±. Thus, we call this
symmetry four-qubit GHZ symmetry. As shown later the
four-qubit GHZ-symmetric states are represented by three
real parameters whereas the three-qubit states contain only
two. Thus, it is more difficult to analyze the entanglement
classification in the four-qubit GHZ-symmetric case than
that in the three–qubit case. Furthermore, if the number of
qubit increases, we need real parameters more and more
to represent the GHZ-symmetric states. Therefore, classifi-
cation of the entanglement for the GHZ-symmetric states
becomes a formidable task in the higher-qubit system. For
this reason it is advisable to restrict the GHZ symmetry to
reduce the number of real parameters. This can be achieved
by modifying parameter (ii) (simultaneous flips) into (ii)
simultaneous and any pair flips without changing parameters
(i) and (iii). In a four-qubit system this modification can be
stated as an invariance under the application of σx ⊗ σx ⊗
1 ⊗ 1, σx ⊗ 1 ⊗ σx ⊗ 1, σx ⊗ 1 ⊗ 1 ⊗ σx , 1 ⊗ σx ⊗ σx ⊗ 1,
1 ⊗ σx ⊗ 1 ⊗ σx , 1 ⊗ 1 ⊗ σx ⊗ σx , and σx ⊗ σx ⊗ σx ⊗ σx .
The simplest pure state which has the modified symmetry (ii)
is

|ψ〉ABCD = 1

2
√

2
(|0000〉 + |1100〉 + |1010〉 + |1001〉

+ |0110〉 + |0101〉 + |0011〉 + |1111〉). (1.3)

It is easy to show that |ψ〉ABCD is symmetric under the flips of
(A,B), (A,C), (A,D), (B,C), (B,D), (C,D), or (A,B,C,D)
parties. Obviously, |GHZ4〉± do not have this modified
symmetry. Of course, the states, which have this modified

4While |GHZ3〉+ is a unique maximally entangled three-qubit
state up to LU, |GHZ4〉+ is not a unique maximally entan-
gled state. In a four-qubit system there are two additional
maximally entangled states |�5〉 = (1/

√
6)(

√
2|1111〉 + |1000〉 +

|0100〉 + |0010〉 + |0001〉) and |�4〉 = (1/2)(|1111〉 + |1100〉 +
|0010〉 + |0001〉 [20].

symmetry, are also GHZ symmetric. Therefore, we call this
modified symmetry restricted GHZ (RGHZ) symmetry.5 As
shown, the RGHZ-symmetric states are represented by two
real parameters like the three-qubit case.

This paper is organized as follows. In Sec. II the general
forms of the GHZ- and RGHZ-symmetric states are derived,
respectively. It is shown that while the GHZ-symmetric states
are represented by three real parameters, the RGHZ-symmetric
states are represented by two real parameters. In Sec. III we
classify the entanglement of the RGHZ-symmetric states. It
is shown that entanglement of the RGHZ-symmetric states is
either Labc2 or Gabcd . In Sec. IV a brief conclusion is given.

II. GHZ-SYMMETRIC AND RGHZ-SYMMETRIC STATES

In this section we derive the general forms of the GHZ-
symmetric and RGHZ-symmetric states and compare them
with each other.

A. GHZ-symmetric states

It is not difficult to show that the general form of the GHZ-
symmetric states is

ρGHZ
4 = x̃[|0000〉〈1111| + |1111〉〈0000|]

+ diag(α̃1,α̃2,α̃2,α̃3,α̃2,α̃3,α̃3,α̃2,α̃2,α̃3,

α̃3,α̃2,α̃3,α̃2,α̃2,α̃1), (2.1)

where x̃, α̃1, α̃2, and α̃3 are real numbers satisfying α̃1 + 4α̃2 +
3α̃3 = 1

2 . Unlike the three-qubit case, ρGHZ
4 is represented by

three real parameters.
Now, we define the following two real parameters ỹ and z̃

as

ỹ = N1[α̃1 + (
√

10 + 3)α̃2],
(2.2)

z̃ = N2[(
√

10 + 3)α̃1 − α̃2],

where

N1 =
√

2

3
− 2

15

√
10 ≈ 0.495,

(2.3)

N2 =
√

14

3
− 22

15

√
10 ≈ 0.169.

Then, it is straightforward to show that the Hilbert-Schmidt
metric of ρGHZ

4 is equal to the Euclidean metric, i.e.,

d2
[
ρGHZ

4 (α̃1,α̃2,α̃3,x̃),ρGHZ
4 (α̃′

1,α̃
′
2,α̃

′
3,x̃

′)
]

= (x̃ − x̃ ′)2 + (ỹ − ỹ ′)2 + (z̃ − z̃′)2, (2.4)

where d2(A,B) = 1
2 tr(A − B)†(A − B). The three real param-

eters x̃, ỹ, and z̃ can be represented as

x̃ = 1

2

[
+
〈
GHZ4|ρGHZ

4 |GHZ4
〉
+ −−

〈
GHZ4|ρGHZ

4 |GHZ4
〉
−
]
,

5The state |ψ〉ABCD given in Eq. (1.3) is not RGHZ symmetric
because it is not symmetric under the qubit rotation about the z axis
although it is symmetric under the modified parameter (ii). In fact,
there is no pure RGHZ-symmetric state.
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ỹ = N1

2

[
+
〈
GHZ4|ρGHZ

4 |GHZ4
〉
+ +−

〈
GHZ4|ρGHZ

4 |GHZ4
〉
−

+ 2(
√

10 + 3)
〈
�|ρGHZ

4 |�〉]
, (2.5)

z̃ = N2

2

[
(
√

10 + 3)+
〈
GHZ4|ρGHZ

4 |GHZ4
〉
+

+ (
√

10 + 3)−
〈
GHZ4|ρGHZ

4 |GHZ4
〉
− − 2

〈
�|ρGHZ

4 |�〉]
,

where |�〉 is either |�+〉 = (|0001〉 + |1110〉)/√2 or |�−〉 =
(|0001〉 − |1110〉)/√2.

In order for ρGHZ
4 to be a physical state the parameters

should be restricted to

0 � α̃2 � 1
8 , 0 � α̃3 � 1

6 , 0 � α̃1 � 1
2 (2.6)

and

α̃1 � ±x̃. (2.7)

These physical conditions imply that any GHZ-symmetric
physical state is represented as a point inside a tetrahedron
shown in Fig. 1(a). In this figure two black dots represent
|GHZ4〉±, respectively. It is worthwhile to note that the
sign of x does not change the character of entanglement
because ρGHZ

4 (−x̃,ỹ,z̃) = uρGHZ
4 (x̃,ỹ,z̃)u†, where u = iσx ⊗

σy ⊗ σy ⊗ σy .
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FIG. 1. (Color online) Each point in the tetrahedron corresponds
to the GHZ-symmetric state. Two black dots represent the four-qubit
GHZ state |GHZ4〉±. The surface of the triangle in the tetrahedron is
the place where the RGHZ-symmetric states reside. (b) Each point in
the triangle corresponds to the RGHZ-symmetric state. This triangle
is equivalent to the triangle in (a). Thus, RGHZ-symmetric states
make up a very small portion and are of zero measure in the whole
set of the GHZ-symmetric states.

B. RGHZ-symmetric states

It is straightforward to show that the general form of RGHZ-
symmetric states is

ρRGHZ
4 = x[|0000〉〈1111| + |1111〉〈0000|]

+ diag(α1,α2,α2,α1,α2,α1,α1,α2,α2,α1,

α1,α2,α1,α2,α2,α1) (2.8)

with α1 = 1
16 + y

2
√

2
and α2 = 1

16 − y

2
√

2
. The parameters x

and y are chosen such that the Euclidean metric in the (x,y)
plane coincides with the Hilbert-Schmidt metric d2(A,B) =
1
2 tr(A − B)†(A − B) again. The parameters can be represented
as

x = 1

2

[
+
〈
GHZ4|ρRGHZ

4 |GHZ4
〉
+ − −

〈
GHZ4|ρRGHZ

4 |GHZ4
〉
−
]
,

y =
√

2

[
+

〈
GHZ4|ρRGHZ

4 |GHZ4
〉
+

+ −
〈
GHZ4|ρRGHZ

4 |GHZ4
〉
− − 1

8

]
. (2.9)

It is also worthwhile to note that the sign of x does not change
the entanglement because ρRGHZ

4 (−x,y) = uρRGHZ
4 (x,y)u†.

This is evident from the fact that the RGHZ-symmetric state
is also GHZ symmetric.

Since ρRGHZ
4 is a quantum state, it should be a positive

operator, which restricts the parameters as follows:

y � ±2
√

2x −
√

2

8
, |x| � 1

8
. (2.10)

Thus, any RGHZ-symmetric physical state is represented as a
point in a triangle depicted in Fig. 1(b).

It is easy to show that ρGHZ
4 is RGHZ symmetric if and only

if x̃ = x, α̃2 = α2, and α̃1 = α̃3 = α1 or equivalently

ỹ = N1

[√
10 + 4

16
−

√
10 + 2

2
√

2
y

]
,

(2.11)

z̃ = N2

[√
10 + 2

16
+

√
10 + 4

2
√

2
y

]
.

Using this relation it is possible to know where the RGHZ-
symmetric states reside in the tetrahedron in Fig. 1(a). In this
figure the red triangle is equivalent to the one in Fig. 1(b).
Thus, the states on this triangle are RGHZ symmetric. From
Fig. 1(a) one can realize that the RGHZ-symmetric states make
up a very small portion and are of zero measure in the entire
set of GHZ-symmetric states.

III. SLOCC CLASSIFICATION OF
RGHZ-SYMMETRIC STATES

The SLOCC classification of the four-qubit pure-state
system was first discussed in Ref. [21] by making use of the
Jordan block structure of some complex symmetric matrix.
Subsequently, the same issue was explored in several more
papers using different approaches [22]. Unlike, however, two-
and three-qubit cases, the results of Refs. [21,22] seem to
contradict each other. This means that still our understanding
on the four-qubit entanglement is incomplete.
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In this paper we adopt the results of Ref. [21], where there
are the following nine inequivalent SLOCC classes:

Gabcd = a + d

2
(|0000〉 + |1111〉) + a − d

2
(|0011〉

+ |1100〉) + b + c

2
(|0101〉 + |1010〉)

+ b − c

2
(|0110〉 + |1001〉),

Labc2 = a + b

2
(|0000〉 + |1111〉) + a − b

2
(|0011〉

+ |1100〉) + c(|0101〉 + |1010〉) + |0110〉,
La2b2 = a(|0000〉 + |1111〉) + b(|0101〉 + |1010〉)

+ |0110〉 + |0011〉,
Lab3 = a(|0000〉 + |1111〉) + a + b

2
(|0101〉

(3.1)

+ |1010〉) + a − b

2
(|0110〉 + |1001〉)

+ i√
2

(|0001〉 + |0010〉 + |0111〉 + |1011〉),

La4 = a(|0000〉 + |0101〉 + |1010〉 + |1111〉)
+ (i|0001〉 + |0110〉 − i|1011〉),

La203⊕1̄
= a(|0000〉 + |1111〉) + (|0011〉 + |0101〉 + |0110〉),

L05⊕3̄
= |0000〉 + |0101〉 + |1000〉 + |1110〉,

L07⊕1̄
= |0000〉 + |1011〉 + |1101〉 + |1110〉,

L03⊕1̄03⊕1̄
= |0000〉 + |0111〉,

where a, b, c, and d are complex parameters with non-negative
real part. In Eqs. (3.1) Gabcd is special in a sense that all its
local states are completely mixed. In other words, Gabcd is a
set of normal states [23].

A. Labc2

In this section we examine a question where the states of
Labc2 reside in the triangle in Fig. 1(b). Before proceeding
further, it is important to note that there is a correspondence
between four-qubit pure states and RGHZ-symmetric states.
Let |ψ〉 be a four-qubit pure state. Then, the corresponding
RGHZ-symmetric state ρRGHZ

4 (ψ) can be written as

ρRGHZ
4 (ψ) =

∫
U |ψ〉〈ψ |U †, (3.2)

where the integral is understood to cover the entire RGHZ
symmetry group, i.e., unitaries U (φ1,φ2,φ3) in Eq. (1.2) and
averaging over the discrete symmetries. For example, if |ψ〉 =∑1

i,j,k,l=0 ψijkl|ijkl〉, ρRGHZ
4 (ψ) becomes Eq. (2.8) with

x = 1

4
Re[ψ0000ψ

∗
1111 + ψ0011ψ

∗
1100

+ψ0101ψ
∗
1010 + ψ0110ψ

∗
1001],

α1 ≡ 1

16
+ y

2
√

2
= 1

8
[|ψ0000|2 + |ψ1111|2 + |ψ0011|2 + |ψ0101|2

+ |ψ0110|2 + |ψ1001|2 + |ψ1010|2 + |ψ1100|2]. (3.3)

I16 16
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B

C

D

GabcdGabcd

Labc2Labc2

0.10 0.05 0.00 0.05 0.10

0.15

0.10

0.05

0.00

0.05

0.10

0.15

x

y

FIG. 2. (Color online) The SLOCC classification of RGHZ-
symmetric states ρRGHZ

4 . In the polygon ABCD states of Labc2

reside. Theorem 2 implies that there is no one-qubit tensor product
three-qubit entangled states in the RGHZ-symmetric states. This fact
implies that the RGHZ symmetry excludes La203⊕1̄

, L03⊕1̄03⊕1̄
, and

La2b2 . Theorem 3 implies that there are states of Gabcd outside the
polygon ABCD.

Now, we are ready to discuss the main issue of this section.
Theorem 1. The RGHZ-symmetric states of the Labc2 class

reside in the polygon ABCD in Fig. 2.
Proof. First we note that when a = b = c = 0, Labc2

reduces to the fully separable state |0110〉. Since LU is a
particular case of SLOCC, this fact implies that all fully
separable states are in Labc2 . Let |ψ sep〉 = (u1 ⊗ u2 ⊗ u3 ⊗
u4)|0000〉, where

uj =
(

Aj −C∗
j

Cj A∗
j

)
with |Aj |2 + |Cj |2 = 1. (3.4)

Then, it is easy to derive the parameters x and y of ρRGHZ
4 (ψ sep)

easily using Eqs. (3.3). Our method for proof is as follows.
Applying the Lagrange multiplier method we maximize x

with given y. Then, it is possible to derive a boundary
xmax = xmax(y) in the (x,y) plane. If a region inside the
boundary is convex, this is the region where the Labc2 -class
states reside. If it is not convex, we have to choose the convex
hull of it for the residential region.

From symmetry it is evident that the maximum of x occurs
when A1 = A2 = A3 = A4 ≡ A. Then the constraint of y

yields A2 = 1
2 (1 ± 25/8y1/4), which gives

xmax = 1
16 (1 − 2

5
4 y

1
2 )2. (3.5)

Since the sign of xmax does not change the entanglement class,
the region represented by green (the shaded region) in Fig. 2
is derived. Since it is not convex, we have to choose a convex
hull, which is a polygon ABCD in Fig. 2. This completes the
proof.

Although we start with a fully separable state, this does
not guarantee that all states in the polygon ABCD are fully
separable because Labc2 has four-way entangled states as well
as fully separable states. The only fact we can assert is that
all Labc2 -class RGHZ-symmetric states reside in the polygon
ABCD.
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B. La203⊕1̄
,L03⊕1̄03⊕1̄

, . . .

In this section we show that the RGHZ symmetry excludes
all SLOCC classes except Gabcd .

Theorem 2. There is no one-qubit product GHZ state in the
RGHZ-symmetric states.

Proof. Let |ψGHZ〉 = (G1 ⊗ G2 ⊗ G3 ⊗ G4)|0〉 ⊗
(|000〉 + |111〉), where

Gj =
(

Aj Bj

Cj Dj

)
. (3.6)

Then, it is easy to compute x and y of ρRGHZ
4 (ψGHZ)

using Eq. (3.3). Now, we want to maximize x with given
y and 〈ψGHZ|ψGHZ〉 = 1. From symmetry of the Lagrange
multiplier equations it is evident that the maximum of x

occurs when A2 = A3 = A4 = B2 = B3 = B4 ≡ a and C2 =
C3 = C4 = D2 = D3 = D4 ≡ c. Then, we define x	 = x +
	0
0 + 	1
1, where 	0 and 	1 are Lagrange multiplier
constants, and

x = 4A1C1a
3c3,


0 = 4
(
A2

1 + C2
1

)
(a2 + c2)2 − 1, (3.7)


1 = 4
[
A2

1a
2(a4 + 3c4) + C2

1c
2(3a4 + c4) − 2α1

]
.

Now, we want to maximize x under the constraints 
0 = 
1 =
0.

First, we solve the two constraints, whose solutions are

A2
1 = 8α1(u1 + u2) − u2

u2
1 − u2

2

, C2
1 = u1 − 8α1(u1 + u2)

u2
1 − u2

2

, (3.8)

where u1 = 4a2(a4 + 3c4) and u2 = 4c2(3a4 + c4). From
∂x	

∂A1
= ∂x	

∂C1
= 0 one can express the Lagrange multiplier

constants as

	0 = −A2
1u1 − C2

1u2

A1C1

2a3c3

u2
1 − u2

2

,

(3.9)

	1 = A2
1 − C2

1

A1C1

2a3c3

u1 − u2
.

Combining Eqs. (3.8), (3.9), and ∂x	

∂a
= ∂x	

∂c
= 0, we obtain

8α1(z2 + 1)4 = z8 + 6z4 + 1, (3.10)

where z = a
c
. Then, the maximum of x with given y becomes

xmax = z3
√

8α1(1 − 8α1)(1 + z2)6 − z2(3 + z4)(1 + 3z4)

(z4 − 1)3
.

(3.11)

Using Eq. (3.10) and performing long and tedious calcu-
lation, one can show that the right-hand side of Eq. (3.11)
reduces to 1

16 (1 − √
16α1 − 1)2, which results in the identical

equation with Eq. (3.5). This implies that there is no one-qubit
product three-qubit GHZ state in the RGHZ-symmetric states.
This completes the proof.

From this theorem one can conclude that there is no L03⊕1̄03⊕1̄

in the RGHZ-symmetric states, because this class involves a
one-qubit product GHZ state. Since it is well known that the
three-qubit states consist of fully separable (S), biseparable
(B), W , and GHZ states, and they satisfy a linear hierarchy
S ⊂ B ⊂ W ⊂ GHZ, Theorem 2 also implies that there is

no one-qubit product W state in the RGHZ-symmetric states.
Thus, RGHZ symmetry excludes La203⊕1̄

too because this class
contains the one-qubit product W state when a = 0. This
theorem also implies that there is no one-qubit product B state,
which excludes La2b2 . Similarly, one can exclude all classes
except Gabcd class.6

C. Gabcd

Now, we want to discuss the entanglement classes of the
remaining RGHZ-symmetric states. In order to conjecture
the classes quickly, let us consider the following double
biseparable state:

|ψBB〉 = 1√
2

(|00〉 + |11〉) ⊗ 1√
2

(|00〉 + |11〉). (3.12)

Such a state belongs to Gabcd with (a = 1, b = c = d = 0) or
a = b = c = d. Then, Eq. (3.3) shows that the parameters of
ρGHZL

4 (ψBB) are x = 1/8 and y = √
2/8, which correspond

to the upper right corner of the triangle in Fig. 2. Since mixing
can result only in the same or a lower entanglement class,
the entanglement class of this corner state should be Gabcd or
its subclasses. However, the subclass of this state should be a
class where fully separable states belong, and those states are
confined in ABCD. Therefore, the corner should be Gabcd .
This fact strongly suggests that all remaining states in Fig. 2
are Gabcd . The following theorem shows that our conjecture is
correct.

Theorem 3. All remaining RGHZ-symmetric states in Fig. 2
are Gabcd class.

Proof. Let |ψBB〉 = (G1 ⊗ G2 ⊗ G3 ⊗ G4)(|00〉 +
|11〉) ⊗ (|00〉 + |11〉), where Gj is given in Eq. (3.6). Then,
it is easy to compute the parameters x and y of ρGHZL

4 (ψBB)
using Eq. (3.3). Similar to the previous theorems we want
to maximize x with given y. From a symmetry of Lagrange
multiplier equations it is evident that the maximum of x

occurs when

A1 = A2 ≡ a1, A3 = A4 ≡ a3,

B1 = B2 ≡ b1, B3 = B4 ≡ b3,
(3.13)

C1 = C2 ≡ c1, C3 = C4 ≡ c3,

D1 = D2 ≡ d1, D3 = D4 ≡ d3.

For later convenience we define μ1 = a2
1 + b2

1, μ2 = a2
3 + b2

3,
μ3 = c2

1 + d2
1 , μ4 = c2

3 + d2
3 , ν1 = a1c1 + b1d1, and ν2 =

a3c3 + b3d3.

6For other classes it is easier to adopt the following numer-
ical calculation than applying the Lagrange multiplier method.
First, we select a representative state |ψ〉 for each SLOCC class.
Next, we generate 16 random numbers and identify them with
Aj ,Bj ,Cj ,Dj (j = 1, . . . ,4). Then, using a mapping (3.3) one
can compute x and y for pure state G1 ⊗ G2 ⊗ G3 ⊗ G4|ψ〉.
Repeating this procedure over and over and collecting all (x,y)
data, one can deduce numerically the residential region of this
class. The numerical calculation shows that the residence of all
SLOCC classes except Gabcd is confined in the polygon ABCD of
Fig. 2.
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In order to apply the Lagrange multiplier method we define
x	 = x + 	0
0 + 	1
1, where

x = 1
2

(
μ1μ2μ3μ4 + ν2

1ν2
2

)
,


0 = (
μ2

1 + 2ν2
1 + μ2

3

)(
μ2

2 + 2ν2
2 + μ2

4

) − 1, (3.14)


1 = (
μ2

1 + μ2
3

)(
μ2

2 + μ2
4

) + 4ν2
1ν2

2 − 8α1.

The constraints 
0 = 0 and 
1 = 0 come from 〈ψBB |ψBB〉 =
1 and Eq. (3.3), respectively.

Now, we have eight equations ∂x	

∂μi
= 0 (i = 1,2,3,4),

∂x	

∂νi
= 0 (i = 1,2), and 
0 = 
1 = 0. Analyzing those equa-

tions, one can show that the maximum of x occurs when
μ1 = μ3 and μ2 = μ4. Then, the constraint 
1 = 0 implies

xmax = 1

16
+ y

2
√

2
, (3.15)

which corresponds to the right-hand side of the triangle in
Fig. 2. This fact implies that all the RGHZ-symmetric states are
Gabcd or its subclass. Since Labc2 are confined in the polygon
ABCD and the remaining classes except Gabcd are already
excluded, the states outside the polygon ABCD should be
Gabcd class, which completes the proof.

Although we start with a double biseparable state, this fact
does not imply that all states outside the polygon are double
biseparable because Gabcd contains four-way entangled states
as well as double biseparable states. The only fact we can say
is that all states outside the polygon ABCD are Gabcd class.

IV. CONCLUSION

In this paper the GHZ and RGHZ symmetries in a four-qubit
system are examined. It is shown that the whole group of
RGHZ-symmetric states involves only two SLOCC classes,
Labc2 and Gabcd . Following Ref. [17] we can use our result to
construct the optimal witness WGabcd\Labc2

, which can detect
the Gabcd class optimally from a set of Labc2 plus Gabcd

states.
As remarked earlier if we choose GHZ symmetry, the

symmetric states are represented by three real parameters
as Eq. (2.1) shows. Probably, these symmetric states in-
volve more kinds of the four-qubit SLOCC classes. The
SLOCC classification of Eq. (2.1) will be explored in the
future.

Another interesting extension of this paper is to generalize
our analysis to any 2n-qubit system. Then, our modification of
symmetry should be changed into “any one-pair, two-pair,
. . ., and n-pair flips.” This would drastically reduce the
number of free parameters in the set of symmetric states. This
strongly restricted symmetry may shed light on the SLOCC
classification of the multipartite states.
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